Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 296: 100349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524394

RESUMO

The histone methyltransferase EZH2 has been the target of numerous small-molecule inhibitor discovery efforts over the last 10+ years. Emerging clinical data have provided early evidence for single agent activity with acceptable safety profiles for first-generation inhibitors. We have developed kinetic methodologies for studying EZH2-inhibitor-binding kinetics that have allowed us to identify a unique structural modification that results in significant increases in the drug-target residence times of all EZH2 inhibitor scaffolds we have studied. The unexpected residence time enhancement bestowed by this modification has enabled us to create a series of second-generation EZH2 inhibitors with sub-pM binding affinities. We provide both biophysical evidence validating this sub-pM potency and biological evidence demonstrating the utility and relevance of such high-affinity interactions with EZH2.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Descoberta de Drogas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Células HeLa , Humanos , Camundongos SCID , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Nat Chem Biol ; 12(7): 531-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214401

RESUMO

The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 26(17): 4350-4, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476424

RESUMO

This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Camundongos , Microssomos Hepáticos/enzimologia , Modelos Moleculares , Ratos
4.
J Cell Sci ; 125(Pt 18): 4253-63, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22718346

RESUMO

The Forkhead transcription factor, FoxO3a, is a known suppressor of primary tumor growth through transcriptional regulation of key genes regulating cell cycle arrest and apoptosis. In many types of cancer, in response to growth factor signaling, FoxO3a is phosphorylated by Akt, resulting in its exclusion from the nucleus. Here we show that FoxO3a remains nuclear in anaplastic thyroid carcinoma (ATC). This correlates with lack of Akt phosphorylation at serine473 in ATC cell lines and tissues of ATC patients, providing a potential explanation for nuclear FoxO3a. Mechanistically, nuclear FoxO3a promotes cell cycle progression by transcriptional upregulation of cyclin A1, promoting proliferation of human ATC cells. Silencing FoxO3a with a reverse genetics approach leads to downregulation of CCNA1 mRNA and protein. These combined data suggest an entirely novel function for FoxO3a in ATC promotion by enhancing cell cycle progression and tumor growth through transcriptional upregulation of cyclin A1. This is clinically relevant since we detected highly elevated CCNA1 mRNA and protein levels in tumor tissues of ATC patients. Our data indicate therapeutic inactivation of FoxO3a may lead to attenuation of tumor expansion in ATC. This new paradigm also suggests caution in relation to current dogma focused upon reactivation of FoxO3a as a therapeutic strategy against cancers harboring active PI3-K and Akt signaling pathways.


Assuntos
Ciclina A1/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Transcrição Gênica , Sequência de Bases , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Ciclina A1/metabolismo , Proteína Forkhead Box O3 , Inativação Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide/enzimologia , Neoplasias da Glândula Tireoide/terapia
5.
Blood ; 119(12): 2863-72, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22267604

RESUMO

To identify rational therapeutic combinations with cytarabine (Ara-C), we developed a high-throughput, small-interference RNA (siRNA) platform for myeloid leukemia cells. Of 572 kinases individually silenced in combination with Ara-C, silencing of 10 (1.7%) and 8 (1.4%) kinases strongly increased Ara-C activity in TF-1 and THP-1 cells, respectively. The strongest molecular concepts emerged around kinases involved in cell-cycle checkpoints and DNA-damage repair. In confirmatory siRNA assays, inhibition of WEE1 resulted in more potent and universal sensitization across myeloid cell lines than siRNA inhibition of PKMYT1, CHEK1, or ATR. Treatment of 8 acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myeloid leukemia (CML) cell lines with commercial and the first-in-class clinical WEE1 kinase inhibitor MK1775 confirmed sensitization to Ara-C up to 97-fold. Ex vivo, adding MK1775 substantially reduced viability in 13 of 14 AML, CML, and myelodysplastic syndrome patient samples compared with Ara-C alone. Maximum sensitization occurred at lower to moderate concentrations of both drugs. Induction of apoptosis was increased using a combination of Ara-C and MK1775 compared with using either drug alone. WEE1 is expressed in primary AML, ALL, and CML specimens. Data from this first siRNA-kinome sensitizer screen suggests that inhibiting WEE1 in combination with Ara-C is a rational combination for the treatment of myeloid and lymphoid leukemias.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Citarabina/farmacologia , Leucemia Mieloide/enzimologia , Proteínas Nucleares/metabolismo , Fosfotransferases/análise , Proteínas Tirosina Quinases/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Fosfotransferases/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Cancer Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833522

RESUMO

Recurrent somatic mutations in the BAF chromatin remodeling complex subunit ARID1A occur frequently in advanced urothelial carcinoma, endometrial cancers, and ovarian clear cell carcinoma, creating an alternative chromatin state that may be exploited therapeutically. The histone methyltransferase EZH2 has previously been identified as targetable vulnerability in the context of ARID1A mutations. Here, we describe the discovery of tulmimetostat, an orally available, clinical stage EZH2 inhibitor and elucidate its therapeutic potential for treating ARID1A mutant tumors. Tulmimetostat administration achieved efficacy in multiple ARID1A mutant bladder, ovarian, and endometrial tumor models and improved cisplatin response in chemotherapy-resistant models. Consistent with its comprehensive and durable level of target coverage, tulmimetostat demonstrated greater efficacy than other PRC2-targeted inhibitors at comparable or lower exposures in a bladder cancer xenograft mouse model. Tulmimetostat mediated extensive changes in gene expression in addition to a profound reduction in global H3K27me3 levels in tumors. Phase I clinical pharmacokinetic and pharmacodynamic data indicated that tulmimetostat exhibits durable exposure and profound target engagement. Importantly, a tulmimetostat controlled gene expression signature identified in whole blood from a cohort of 32 cancer patients correlated with tulmimetostat exposure, representing a pharmacodynamic marker for the assessment of target coverage for PRC2-targeted agents in the clinic. Collectively, this data suggests that tulmimetostat has the potential to achieve clinical benefit in solid tumors as a monotherapy but also in combination with chemotherapeutic agents and may be beneficial in various indications with recurrent ARID1A mutations.

7.
Int J Cancer ; 129(11): 2621-31, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21448905

RESUMO

Brain metastasis (BM) can affect ∼ 25% of nonsmall cell lung cancer (NSCLC) patients during their lifetime. Efforts to characterize patients that will develop BM have been disappointing. microRNAs (miRNAs) regulate the expression of target mRNAs. miRNAs play a role in regulating a variety of targets and, consequently, multiple pathways, which make them a powerful tool for early detection of disease, risk assessment, and prognosis. We investigated miRNAs that may serve as biomarkers to differentiate between NSCLC patients with and without BM. miRNA microarray profiling was performed on samples from clinically matched NSCLC from seven patients with BM (BM+) and six without BM (BM-). Using t-test and further qRT-PCR validation, eight miRNAs were confirmed to be significantly differentially expressed. Of these, expression of miR-328 and miR-330-3p were able to correctly classify BM+ vs. BM- patients. This classifier was used on a validation cohort (n = 15), and it correctly classified 12/15 patients. Gene expression analysis comparing A549 parental and A549 cells stably transfected to over-express miR-328 (A549-328) identified several significantly differentially expressed genes. PRKCA was one of the genes over-expressed in A549-328 cells. Additionally, A549-328 cells had significantly increased cell migration compared to A549 cells, which was significantly reduced upon PRKCA knockdown. In summary, miR-328 has a role in conferring migratory potential to NSCLC cells working in part through PRKCA and with further corroboration in additional independent cohorts, these miRNAs may be incorporated into clinical treatment decision making to stratify NSCLC patients at higher risk for developing BM.


Assuntos
Adenocarcinoma/genética , Neoplasias Encefálicas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Movimento Celular , Neoplasias Pulmonares/genética , MicroRNAs/genética , Adenocarcinoma/secundário , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/secundário , Carcinoma de Células Escamosas/secundário , Adesão Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
8.
J Med Chem ; 64(10): 6730-6744, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33955740

RESUMO

Inhibition of hydroxy acid oxidase 1 (HAO1) is a strategy to mitigate the accumulation of toxic oxalate that results from reduced activity of alanine-glyoxylate aminotransferase (AGXT) in primary hyperoxaluria 1 (PH1) patients. DNA-Encoded Chemical Library (DECL) screening provided two novel chemical series of potent HAO1 inhibitors, represented by compounds 3-6. Compound 5 was further optimized via various structure-activity relationship (SAR) exploration methods to 29, a compound with improved potency and absorption, distribution, metabolism, and excretion (ADME)/pharmacokinetic (PK) properties. Since carboxylic acid-containing compounds are often poorly permeable and have potential active glucuronide metabolites, we undertook a brief, initial exploration of acid replacements with the aim of identifying non-acid-containing HAO1 inhibitors. Structure-based drug design initiated with Compound 5 led to the identification of a nonacid inhibitor of HAO1, 31, which has weaker potency and increased permeability.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , DNA/química , Bibliotecas de Moléculas Pequenas/química , Oxirredutases do Álcool/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Desenho de Fármacos , Meia-Vida , Humanos , Hiperoxalúria Primária/metabolismo , Hiperoxalúria Primária/patologia , Indóis/química , Indóis/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/metabolismo , Transaminases/genética , Transaminases/metabolismo
9.
J Med Chem ; 64(8): 5049-5066, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33844532

RESUMO

Bispecific degraders (PROTACs) of ERα are expected to be advantageous over current inhibitors of ERα signaling (aromatase inhibitors/SERMs/SERDs) used to treat ER+ breast cancer. Information from DNA-encoded chemical library (DECL) screening provides a method to identify novel PROTAC binding features as the linker positioning, and binding elements are determined directly from the screen. After screening ∼120 billion DNA-encoded molecules with ERα WT and 3 gain-of-function (GOF) mutants, with and without estradiol to identify features that enrich ERα competitively, the off-DNA synthesized small molecule exemplar 7 exhibited nanomolar ERα binding, antagonism, and degradation. Click chemistry synthesis on an alkyne E3 ligase engagers panel and an azide variant of 7 rapidly generated bispecific nanomolar degraders of ERα, with PROTACs 18 and 21 inhibiting ER+ MCF7 tumor growth in a mouse xenograft model of breast cancer. This study validates this approach toward identifying novel bispecific degrader leads from DECL screening with minimal optimization.


Assuntos
DNA/química , Receptor alfa de Estrogênio/metabolismo , Bibliotecas de Moléculas Pequenas/química , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Click , DNA/metabolismo , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/metabolismo , Antagonistas de Estrogênios/farmacologia , Antagonistas de Estrogênios/uso terapêutico , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Feminino , Meia-Vida , Humanos , Indóis/química , Indóis/metabolismo , Cinética , Camundongos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Cancer ; 9: 218, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20718987

RESUMO

BACKGROUND: Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. RESULTS: Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. CONCLUSION: In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.


Assuntos
Interferência de RNA , Sarcoma de Ewing/tratamento farmacológico , Divisão Celular , Linhagem Celular Tumoral , Humanos , Fenótipo , RNA Interferente Pequeno , Sarcoma de Ewing/patologia
11.
Gynecol Oncol ; 118(3): 220-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20722101

RESUMO

OBJECTIVE: Ovarian cancer retains a poor prognosis among the female gynaecological malignancies. It constitutes about 3% of all malignancies in women and accounts for 5% of all female cancer related deaths. A standard treatment is cytoreductive surgery followed by adjuvant chemotherapy, and re-treatment with platinum based chemotherapy at the time of relapse. In order to improve cisplatin response in ovarian cancer cells, we utilized a high-throughput RNAi screening to identify kinase modulators. METHODS: A high-throughput RNAi screen was performed using a siRNA library targeting 572 kinases to identify potentiators of cisplatin response in the ovarian cancer cell line SKOV3. RESULTS: RNAi screening identified at least 55 siRNAs that potentiated the growth inhibitory effects of cisplatin in SKOV3 cells. Inhibition of ATR and CHK1 resulted in the greatest modulation of cisplatin response. Drug dose response of cisplatin in the presence of siRNA validated the effects of these target genes. To show that the siRNA data could be successfully translated into potential therapeutic strategies, CHK1 was further targeted with small molecule inhibitor PD 407824 in combination with cisplatin. Results showed that treatment of SKOV3 and OVCAR3 cells with CHK1 inhibitor PD 407824 led to sensitization of ovarian cancer cells to cisplatin. CONCLUSIONS: Our data provides kinase targets that could be exploited to design better therapeutics for ovarian cancer patients. We also demonstrate the effectiveness of high-throughput RNAi screening as a tool for identifying sensitizing targets to known and established chemotherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Proteínas Quinases/genética , Interferência de RNA , Carbazóis/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Feminino , Humanos , Neoplasias Ovarianas/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética
12.
ACS Med Chem Lett ; 11(6): 1205-1212, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551002

RESUMO

Histone methyltransferase EZH2, which is the catalytic subunit of the PRC2 complex, catalyzes the methylation of histone H3K27-a transcriptionally repressive post-translational modification (PTM). EZH2 is commonly mutated in hematologic malignancies and frequently overexpressed in solid tumors, where its expression level often correlates with poor prognosis. First generation EZH2 inhibitors are beginning to show clinical benefit, and we believe that a second generation EZH2 inhibitor could further build upon this foundation to fully realize the therapeutic potential of EZH2 inhibition. During our medicinal chemistry campaign, we identified 4-thiomethyl pyridone as a key modification that led to significantly increased potency and prolonged residence time. Leveraging this finding, we optimized a series of EZH2 inhibitors, with enhanced antitumor activity and improved physiochemical properties, which have the potential to expand the clinical use of EZH2 inhibition.

13.
J Transl Med ; 7: 43, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19519883

RESUMO

BACKGROUND: Pancreatic cancer retains a poor prognosis among the gastrointestinal cancers. It affects 230,000 individuals worldwide, has a very high mortality rate, and remains one of the most challenging malignancies to treat successfully. Treatment with gemcitabine, the most widely used chemotherapeutic against pancreatic cancer, is not curative and resistance may occur. Combinations of gemcitabine with other chemotherapeutic drugs or biological agents have resulted in limited improvement. METHODS: In order to improve gemcitabine response in pancreatic cancer cells, we utilized a synthetic lethal RNAi screen targeting 572 known kinases to identify genes that when silenced would sensitize pancreatic cancer cells to gemcitabine. RESULTS: Results from the RNAi screens identified several genes that, when silenced, potentiated the growth inhibitory effects of gemcitabine in pancreatic cancer cells. The greatest potentiation was shown by siRNA targeting checkpoint kinase 1 (CHK1). Validation of the screening results was performed in MIA PaCa-2 and BxPC3 pancreatic cancer cells by examining the dose response of gemcitabine treatment in the presence of either CHK1 or CHK2 siRNA. These results showed a three to ten-fold decrease in the EC50 for CHK1 siRNA-treated cells versus control siRNA-treated cells while treatment with CHK2 siRNA resulted in no change compared to controls. CHK1 was further targeted with specific small molecule inhibitors SB 218078 and PD 407824 in combination with gemcitabine. Results showed that treatment of MIA PaCa-2 cells with either of the CHK1 inhibitors SB 218078 or PD 407824 led to sensitization of the pancreatic cancer cells to gemcitabine. CONCLUSION: These findings demonstrate the effectiveness of synthetic lethal RNAi screening as a tool for identifying sensitizing targets to chemotherapeutic agents. These results also indicate that CHK1 could serve as a putative therapeutic target for sensitizing pancreatic cancer cells to gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carbazóis/farmacologia , Desoxicitidina/análogos & derivados , Inativação Gênica , Neoplasias Pancreáticas/tratamento farmacológico , Interferência de RNA , Idoso , Alcaloides/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Impedância Elétrica , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Transfecção , Gencitabina
14.
J Periodontol ; 80(5): 833-49, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19405838

RESUMO

BACKGROUND: Interleukin (IL)-1beta is a key cytokine in the pathogenesis of periodontitis, and it induces inflammatory mediators in periodontal diseases. We developed immortalized human gingival fibroblasts (HGFs), investigated the effects of IL-1beta on the gene expression using expression arrays containing approximately 40,000 genes, and tested the role of nuclear factor-kappa B (NF-kappaB) in maintaining an activated HGF population. METHODS: Total RNA was isolated from IL-1beta-induced and mock-induced control cells. Gene expression analyses were performed using expression arrays and confirmed by quantitative real-time polymerase chain reaction. Western blot analysis to show inhibitor of kappa B-alpha (IkappaBalpha) phosphorylation and immunostaining of cells for NF-kappaB nuclear translocation were performed. Apoptosis was confirmed by assay of poly ADP-ribose polymerase (PARP) cleavage. RESULTS: A total of 382 probe sets corresponding to 254 genes were differentially expressed in IL-1beta-induced cells (P <0.001). A total of 215 genes were upregulated, and 39 genes were downregulated. Most notable NF-kappaB pathway members (NFkappaB1, NFkappaB2, IkappaBalpha, IkappaBepsilon, IkappaBzeta, REL, RELB, and TA-NFKBH) were upregulated. IkappaBalpha was phosphorylated, and NF-kappaB accumulated in the nucleus. An IL-1beta-induced set of 27 genes was downregulated by an NF-kappaB inhibitor, leading to a decreased number of viable cells and suggesting an antiapoptotic role for NF-kappaB. CONCLUSIONS: IL-1beta leads to a large number of significant expression changes consistent with a pathologic role in periodontitis, including enhancement of inflammatory cytokines, chemokines, transcription factors, matrix metalloproteinases, adhesion molecules, and especially NF-kappaB-dependent antiapoptotic genes. NF-kappaB activation blocks apoptosis, thereby stabilizing the HGF population in inflammation.


Assuntos
Perfilação da Expressão Gênica , Gengivite/metabolismo , Interleucina-1beta/fisiologia , NF-kappa B/fisiologia , Transporte Ativo do Núcleo Celular , Apoptose/genética , Linhagem Celular Transformada , Regulação para Baixo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Gengiva/citologia , Gengiva/metabolismo , Gengivite/genética , Gengivite/imunologia , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-1beta/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Reação em Cadeia da Polimerase , Regulação para Cima
15.
Clin Cancer Res ; 11(6): 2272-84, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15788677

RESUMO

PURPOSE: Identification of molecular changes characteristic of development and progression of oral cancer are of paramount importance for effective intervention. Stromelysin 3 (MMP11) is a unique matrix metalloproteinase shown to have dual function during cancer progression. The transcription factor Ets-1 and vascular endothelial growth factor (VEGF) are important proangiogenic factors in cancer. This study was designed to test the hypothesis that concomitant expression of stromelysin 3, Ets-1, and/or VEGF affects the development, progression, and prognosis of oral cancer. PATIENTS AND METHODS: Immunohistochemical analysis of stromelysin 3, Ets-1, VEGF, and platelet/endothelial cell adhesion molecule 1 (a marker for intratumoral microvessel density) was carried out in serial paraffin embedded tissue sections of 220 oral squamous cell carcinomas (OSCC), 90 precancerous lesions (59 hyperplasias and 31 dysplasias), and 81 matched histologically normal oral tissues. RESULTS: Ets-1, VEGF, and stromelysin 3 expression independently correlated with increased intratumoral microvessel density in precancerous lesions (P = 0.05, 0.001, and 0.026, respectively) as well as in SCCs (P = 0.005, 0.01, and 0.031, respectively). Logistic regression analysis revealed that concomitant expression of stromelysin 3 and Ets-1 (stromelysin 3(+)/ Ets-1(+) phenotype; odds ratio, 3.7; P = 0.001) was the most significant predictor for transition to precancerous stage, whereas dual expression of stromelysin 3 and VEGF (stromelysin 3(+)/ VEGF(+) phenotype; odds ratio, 2.07; P = 0.004) was the most important predictor for progression from precancerous stage to frank malignancy. Intriguingly, Ets-1 expression was significantly associated with VEGF expression and stromelysin 3 expression in precancerous tissues as well as OSCCs. Follow-up data for 144 patients for a maximum period of 115 months showed that VEGF [hazards ratio (HR), 4.532; P = 0.004] and Ets-1 (HR = 2.182; P = 0.049) expression significantly correlated with reduced disease-free survival in univariate analysis. In bivariate analysis, patients harboring Ets-1(+)/VEGF(+) phenotype had the worst survival (median disease-free survival, 50 months; HR, 2.943; P = 0.003). Multivariate analysis using Cox's proportional hazards model showed that increased VEGF expression was the most significant adverse prognosticator in OSCC patients (HR, 4.470; P = 0.004). CONCLUSIONS: In conclusion, this study provides the first evidence of concomitant expression of stromelysin 3, VEGF, and Ets-1 in clinical specimens in different stages of development of oral cancer. In early stages, concomitant expression of stromelysin 3 and Ets-1 favors the development of a precancerous state, whereas dual expression of stromelysin 3 and VEGF is associated with progression from precancerous to cancerous state. VEGF expression is an adverse prognosticator for disease-free survival.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Metaloendopeptidases/metabolismo , Neoplasias Bucais/metabolismo , Neovascularização Patológica/metabolismo , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Masculino , Metaloproteinase 11 da Matriz , Metaloendopeptidases/genética , Pessoa de Meia-Idade , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Neoplasias Bucais/irrigação sanguínea , Neoplasias Bucais/patologia , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Proteínas Tirosina Quinases/metabolismo , Proteína Proto-Oncogênica c-ets-1 , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets , Taxa de Sobrevida , Fatores de Transcrição/genética , Fator A de Crescimento do Endotélio Vascular/genética
16.
Methods Mol Biol ; 1470: 247-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27581298

RESUMO

High-throughput RNA interference (HT-RNAi) screening is an effective technology to help identify important genes and pathways involved in a biological process. Analysis of high-throughput RNAi screening data is a critical part of this technology, and many analysis methods have been described. Here, we summarize the workflow and types of analyses commonly used in high-throughput RNAi screening.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Interferência de RNA , Controle de Qualidade , RNA Interferente Pequeno , Fluxo de Trabalho
17.
Cancer Res ; 76(7): 1975-88, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26837761

RESUMO

Lysine-specific demethylase 1 (KDM1A) is a transcriptional coregulator that can function in both the activation and repression of gene expression, depending upon context. KDM1A plays an important role in hematopoiesis and was identified as a dependency factor in leukemia stem cell populations. Therefore, we investigated the consequences of inhibiting KDM1A in a panel of cell lines representing all acute myelogenous leukemia (AML) subtypes using selective, reversible and irreversible KDM1A small-molecule inhibitors. Cell models of AML, CML, and T-ALL were potently affected by KDM1A inhibition, and cells bearing RUNX1-RUNX1T1 (AML1-ETO) translocations were especially among the most sensitive. RNAi-mediated silencing of KDM1A also effectively suppressed growth of RUNX1-RUNX1T1-containing cell lines. Furthermore, pharmacologic inhibition of KDM1A resulted in complete abrogation of tumor growth in an AML xenograft model harboring RUNX1-RUNX1T1 translocations. We unexpectedly found that KDM1A-targeting compounds not only inhibited the catalytic activity of the enzyme, but evicted KDM1A from target genes. Accordingly, compound-mediated KDM1A eviction was associated with elevated levels of local histone H3 lysine 4 dimethylation, and increased target gene expression, which was further accompanied by cellular differentiation and induction of cell death. Finally, our finding that KDM1A inhibitors effectively synergize with multiple conventional as well as candidate anti-AML agents affords a framework for potential future clinical application. Cancer Res; 76(7); 1975-88. ©2016 AACR.


Assuntos
Histona Desmetilases/metabolismo , Leucemia Mieloide Aguda/genética , Linhagem Celular Tumoral , Histona Desmetilases/genética , Humanos , Processamento de Proteína Pós-Traducional , Transfecção
18.
Laryngoscope ; 114(2): 241-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14755198

RESUMO

OBJECTIVES/HYPOTHESIS: The objective was to introduce microarray technology and its applications in cancer research to the head and neck clinician. STUDY DESIGN: Literature review combined with methodology and examples from the authors' experiences with microarray analysis of tumors of the head and neck. METHODS: Search of literature and the authors' experience was made for technical details, alternative methods of data analysis, available bioinformatics tools, and applications of microarrays in cancer research. RESULTS: Microarrays allow the simultaneous analysis of the expression of thousands of genes. The use of a well-developed microarray study design leads to informative results. There are various bioinformatics resources widely available to aid in the analysis of microarray data. However, there is not yet a gold standard for analysis because this methodology is still evolving. CONCLUSION: Microarray studies may allow researchers to identify genetic changes relevant to diagnosis and prognosis in patients with head and neck cancer. Although still relatively new, this powerful methodology has immense potential to aid in understanding of the genetic changes that are important in head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise Mutacional de DNA , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Família Multigênica , Reação em Cadeia da Polimerase , Prognóstico
19.
Chem Biol ; 21(11): 1463-75, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25457180

RESUMO

The histone lysine methyltransferase (MT) Enhancer of Zeste Homolog 2 (EZH2) is considered an oncogenic driver in a subset of germinal center B-cell-like diffuse large B cell lymphoma (GCB-DLBCL) and follicular lymphoma due to the presence of recurrent, monoallelic mutations in the EZH2 catalytic domain. These genomic data suggest that targeting the EZH2 MT activity is a valid therapeutic strategy for the treatment of lymphoma patients with EZH2 mutations. Here we report the identification of highly potent and selective EZH2 small molecule inhibitors, their validation by a cellular thermal shift assay, application across a large cell panel representing various non-Hodgkin's lymphoma (NHL) subtypes, and their efficacy in EZH2mutant-containing GCB-DLBCL xenograft models. Surprisingly, our EZH2 inhibitors selectively affect the turnover of trimethylated, but not monomethylated histone H3 lysine 27 at pharmacologically relevant doses. Importantly, we find that these inhibitors are broadly efficacious also in NHL models with wild-type EZH2.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Histonas/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/toxicidade , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Histonas/química , Humanos , Cinética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/patologia , Metilação , Camundongos , Camundongos Nus , Mutação , Peptídeos/análise , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Transplante Heterólogo
20.
PLoS One ; 7(9): e45614, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029135

RESUMO

BACKGROUND: Maxillary sinus carcinoma (MSC) is a rare cancer of the head and neck region. Patients are treated with surgery, radiation therapy, and chemotherapy and the treatment regimen is based on patient's age, general health condition, disease stage, and its extent of spread. There is very little information available on the genetics of this disease. DNA content based flow sorting of tumor cells followed by array comparative genomic hybridization allows for high definition global assessment of distinct clonal changes within tumor populations. METHODS: We applied this technique to primary and metastatic samples collected from a patient with radio- and chemotherapy refractory maxillary sinus carcinoma to gauge the progression of this disease. RESULTS: A clonal KIT amplicon was present in aneuploid populations sorted from the primary tumor and in divergent subclones arising in metastatic foci found in the brain, lung, and jejunum. The evolution of these subclones was associated with distinct genetic aberrations and DNA ploidies. CONCLUSION: The information presented here paves the path to understanding the development and progression of this disease.


Assuntos
Neoplasias do Seio Maxilar/genética , Antineoplásicos/uso terapêutico , Hibridização Genômica Comparativa , Humanos , Neoplasias do Seio Maxilar/patologia , Neoplasias do Seio Maxilar/terapia , Metástase Neoplásica , Radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA