Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(41): e202407469, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38980970

RESUMO

2-Bromo-1-(3,3-dinitroazetidin-1-yl)ethan-1-one (RRx-001) is a hypoxic cell chemotherapeutics with already demonstrated synergism in combined chemo-radiation therapy. The interaction of the compound with secondary low-energy electrons formed in large amounts during the physico-chemical phase of the irradiation may lead to these synergistic effects. The present study focuses on the first step of RRx-001 interaction with low-energy electrons in which a transient anion is formed and fragmented. Combination of two experiments allows us to disentangle the decay of the RRx-001 anion on different timescales. Sole presence of the electron initiates rapid dissociation of NO2 and HNO2 neutrals while NO2 - and Br- anions are produced both directly and via intermediate complexes. Based on our quantum chemical calculations, we propose that bidirectional state switching between π*(NO2) and σ*(C-Br) states explains the experimental spectra. The fast dynamics monitored will impact the condensed phase chemistry of the anion as well.


Assuntos
Antineoplásicos , Elétrons , Radiossensibilizantes , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Estrutura Molecular , Teoria Quântica , Azetidinas/química , Azetidinas/farmacologia
2.
J Am Chem Soc ; 145(16): 9059-9071, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040588

RESUMO

Single-strand breaks (SSBs) induced via electron attachment were previously observed in dry DNA under ultrahigh vacuum (UHV), while hydrated electrons were found not able to induce this DNA damage in an aqueous solution. To explain these findings, crossed electron-molecular beam (CEMB) and anion photoelectron spectroscopy (aPES) experiments coupled to density functional theory (DFT) modeling were used to demonstrate the fundamental importance of proton transfer (PT) in radical anions formed via electron attachment. Three molecular systems were investigated: 5'-monophosphate of 2'-deoxycytidine (dCMPH), where PT in the electron adduct is feasible, and two ethylated derivatives, 5'-diethylphosphate and 3',5'-tetraethyldiphosphate of 2'-deoxycytidine, where PT is blocked due to substitution of labile protons with the ethyl residues. CEMB and aPES experiments confirmed the cleavage of the C3'/C5'-O bond as the main dissociation channel related to electron attachment in the ethylated derivatives. In the case of dCMPH, however, electron attachment (in the aPES experiments) yielded its parent (intact) radical anion, dCMPH-, suggesting that its dissociation was inhibited. The aPES-measured vertical detachment energy of the dCMPH- was found to be 3.27 eV, which agreed with its B3LYP/6-31++G(d,p)-calculated value and implied that electron-induced proton transfer (EIPT) had occurred during electron attachment to the dCMPH model nucleotide. In other words, EIPT, subduing dissociation, appeared to be somewhat protective against SSB. While EIPT is facilitated in solution compared to the dry environment, the above findings are consistent with the stability of DNA against hydrated electron-induced SSB in solution versus free electron-induced SSB formation in dry DNA.


Assuntos
Hominidae , Prótons , Animais , Modelos Moleculares , Elétrons , DNA/química , Ânions/química , Dano ao DNA
3.
Chemphyschem ; 23(5): e202100834, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146888

RESUMO

Ubiquinone molecules have a high biological relevance due to their action as electron carriers in the mitochondrial electron transport chain. Here, we studied the dissociative interaction of free electrons with CoQ0 , the smallest ubiquinone derivative with no isoprenyl units, and its fully reduced form, 2,3-dimethoxy-5-methylhydroquinone (CoQ0 H2 ), an ubiquinol derivative. The anionic products produced upon dissociative electron attachment (DEA) were detected by quadrupole mass spectrometry and studied theoretically through quantum chemical and electron scattering calculations. Despite the structural similarity of the two studied molecules, remarkably only a few DEA reactions are present for both compounds, such as abstraction of a neutral hydrogen atom or the release of a negatively charged methyl group. While the loss of a neutral methyl group represents the most abundant reaction observed in DEA to CoQ0 , this pathway is not observed for CoQ0 H2 . Instead, the loss of a neutral OH radical from the CoQ0 H2 temporary negative ion is observed as the most abundant reaction channel. Overall, this study gives insights into electron attachment properties of simple derivatives of more complex molecules found in biochemical pathways.


Assuntos
Elétrons , Hidrogênio , Ânions , Hidrogênio/química , Íons
4.
J Chem Phys ; 157(7): 074301, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35987575

RESUMO

Fluorodeoxyglucose (FDG) is a glucose derivative with fluorine at the C2 position. The molecule containing the radioactive F-18 isotope is well known from its application in positron emission tomography as a radiotracer in tumor examination. In the stable form with the F-19 isotope, FDG was proposed as a potential radiosensitizer. Since reduction processes may be relevant in radiosensitization, we investigated low-energy electron attachment to FDG with a crossed electron-molecule beam experiment and with quantum chemical calculations as well as molecular dynamics at elevated temperatures to reveal statistical dissociation. We experimentally find that the susceptibility of FDG to low-energy electrons is relatively low. The calculations indicate that upon attachment of an electron with a kinetic energy of ∼0 eV, only dipole-bound states are accessible, which agrees with the weak ion yields observed in the experiment. The temporary negative ions formed upon electron attachment to FDG may decay by a large variety of dissociation reactions. The major fragmentation channels include H2O, HF, and H2 dissociation, accompanied by ring opening.


Assuntos
Elétrons , Radiossensibilizantes , Fluordesoxiglucose F18 , Íons , Radiossensibilizantes/química
5.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955461

RESUMO

We investigate dissociative electron attachment to 5-fluorouracil (5-FU) employing a crossed electron-molecular beam experiment and quantum chemical calculations. Upon the formation of the 5-FU- anion, 12 different fragmentation products are observed, the most probable dissociation channel being H loss. The parent anion, 5-FU-, is not stable on the experimental timescale (~140 µs), most probably due to the low electron affinity of FU; simple HF loss and F- formation are seen only with a rather weak abundance. The initial dynamics upon electron attachment seems to be governed by hydrogen atom pre-dissociation followed by either its full dissociation or roaming in the vicinity of the molecule, recombining eventually into the HF molecule. When the HF molecule is formed, the released energy might be used for various ring cleavage reactions. Our results show that higher yields of the fluorine anion are most probably prevented through both faster dissociation of an H atom and recombination of F- with a proton to form HF. Resonance calculations indicate that F- is formed upon shape as well as core-excited resonances.


Assuntos
Elétrons , Ácido Fluorídrico , Ânions , Fluoruracila/química , Hidrogênio/química
6.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808887

RESUMO

We investigate dissociative electron attachment to tirapazamine through a crossed electron-molecule beam experiment and quantum chemical calculations. After the electron is attached and the resulting anion reaches the first excited state, D1, we suggest a fast transition into the ground electronic state through a conical intersection with a distorted triazine ring that almost coincides with the minimum in the D1 state. Through analysis of all observed dissociative pathways producing heavier ions (90-161 u), we consider the predissociation of an OH radical with possible roaming mechanism to be the common first step. This destabilizes the triazine ring and leads to dissociation of highly stable nitrogen-containing species. The benzene ring is not altered during the process. Dissociation of small anionic fragments (NO2-, CN2-, CN-, NH2-, O-) cannot be conclusively linked to the OH predissociation mechanism; however, they again do not require dissociation of the benzene ring.


Assuntos
Elétrons , Tirapazamina/química , Algoritmos , Ânions/química , Modelos Químicos , Radiossensibilizantes/química
7.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652878

RESUMO

The incorporation of modified uracil derivatives into DNA leads to the formation of radical species that induce DNA damage. Molecules of this class have been suggested as radiosensitizers and are still under investigation. In this study, we present the results of dissociative electron attachment to uracil-5-yl O-(N,N-dimethylsulfamate) in the gas phase. We observed the formation of 10 fragment anions in the studied range of electron energies from 0-12 eV. Most of the anions were predominantly formed at the electron energy of about 0 eV. The fragmentation paths were analogous to those observed in uracil-5-yl O-sulfamate, i.e., the methylation did not affect certain bond cleavages (O-C, S-O and S-N), although relative intensities differed. The experimental results are supported by quantum chemical calculations performed at the M06-2X/aug-cc-pVTZ level of theory. Furthermore, a resonance stabilization method was used to theoretically predict the resonance positions of the fragment anions O- and CH3-.


Assuntos
Radiossensibilizantes/química , Algoritmos , Estabilidade de Medicamentos , Elétrons , Gases/química , Metilação , Modelos Moleculares
8.
Angew Chem Int Ed Engl ; 60(35): 19128-19132, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34214239

RESUMO

Radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) has been successfully applied to generate polymers of well-defined architecture. For RAFT polymerization a source of radicals is required. Recent work has demonstrated that for minimal side-reactions and high spatio-temporal control these should be formed directly from the RAFT agent or macroRAFT agent (usually carbonothiosulfanyl compounds) thermally, photochemically or by electrochemical reduction. In this work, we investigated low-energy electron attachment to a common RAFT agent (cyanomethyl benzodithioate), and, for comparison, a simple carbonothioylsulfanyl compound (dimethyl trithiocarbonate, DMTTC) in the gas phase by means of mass spectrometry as well as quantum chemical calculations. We observe for both compounds that specific cleavage of the C-S bond is induced upon low-energy electron attachment at electron energies close to zero eV. This applies even in the case of a poor homolytic leaving group (. CH3 in DMTTC). All other dissociation reactions found at higher electron energies are much less abundant. The present results show a high control of the chemical reactions induced by electron attachment.

9.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255344

RESUMO

Nitrofurans belong to the class of drugs typically used as antibiotics or antimicrobials. The defining structural component is a furan ring with a nitro group attached. In the present investigation, electron attachment to 2-nitrofuran (C4H3NO3), which is considered as a potential radiosensitizer candidate for application in radiotherapy, has been studied in a crossed electron-molecular beams experiment. The present results indicate that low-energy electrons with kinetic energies of about 0-12 eV effectively decompose the molecule. In total, twelve fragment anions were detected within the detection limit of the apparatus, as well as the parent anion of 2-nitrofuran. One major resonance region of ≈0-5 eV is observed in which the most abundant anions NO2-, C4H3O-, and C4H3NO3- are detected. The experimental results are supported by ab initio calculations of electronic states in the resulting anion, thermochemical thresholds, connectivity between electronic states of the anion, and reactivity analysis in the hot ground state.


Assuntos
Ânions/farmacologia , Neoplasias/radioterapia , Nitrofuranos/farmacologia , Radiossensibilizantes/farmacologia , Elétrons , Humanos , Cinética , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/patologia
10.
Angew Chem Int Ed Engl ; 59(39): 17177-17181, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32543771

RESUMO

Tirapazamine (TPZ) has been tested in clinical trials on radio-chemotherapy due to its potential highly selective toxicity towards hypoxic tumor cells. It was suggested that either the hydroxyl radical or benzotriazinyl radical may form as bioactive radical after the initial reduction of TPZ in solution. In the present work, we studied low-energy electron attachment to TPZ in the gas phase and investigated the decomposition of the formed TPZ- anion by mass spectrometry. We observed the formation of the (TPZ-OH)- anion accompanied by the dissociation of the hydroxyl radical as by far the most abundant reaction pathway upon attachment of a low-energy electron. Quantum chemical calculations suggest that NH2 pyramidalization is the key reaction coordinate for the reaction dynamics upon electron attachment. We propose an OH roaming mechanism for other reaction channels observed, in competition with the OH dissociation.

11.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489947

RESUMO

We study the reactivity of misonidazole with low-energy electrons in a water environment combining experiment and theoretical modelling. The environment is modelled by sequential hydration of misonidazole clusters in vacuum. The well-defined experimental conditions enable computational modeling of the observed reactions. While the NO 2 - dissociative electron attachment channel is suppressed, as also observed previously for other molecules, the OH - channel remains open. Such behavior is enabled by the high hydration energy of OH - and ring formation in the neutral radical co-fragment. These observations help to understand the mechanism of bio-reductive drug action. Electron-induced formation of covalent bonds is then important not only for biological processes but may find applications also in technology.


Assuntos
Elétrons , Misonidazol/química , Modelos Moleculares , Modelos Teóricos , Estrutura Molecular , Solventes , Análise Espectral , Água
12.
Commun Chem ; 7(1): 188, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39187571

RESUMO

Plasmon-driven chemical conversion is gaining burgeoning interest in the field of heterogeneous catalysis. Herein, we study the reactivity of N-methyl-4-sulfanylbenzamide (NMSB) at nanocavities of gold and silver nanoparticle aggregates under plasmonic excitation to gain understanding of the respective reaction mechanism. NMSB is a secondary amide, which is a frequent binding motive found in peptides and a common coupling product of organic molecules and biomolecules. Surface-enhanced Raman scattering (SERS) is used as a two-in-one in-situ spectroscopic tool to initiate the molecular transformation process and simultaneously monitor and analyze the reaction products. Supported by dissociative electron attachment (DEA) studies with the gas phase molecule, a hot electron-mediated conversion of NMSB to p-mercaptobenzamide and p-mercaptobenzonitrile is proposed at the plasmonic nanocavities. The reaction rate showed negligible dependence on the external temperature, ruling out the dominant role of heat in the chemical transformation at the plasmonic interface. This is reflected in the absence of a superlinear relationship between the reaction rate constant and the laser power density, and DEA and SERS studies indicate a hot-electron mediated pathway. We conclude that the overall reaction rate is limited by the availability of energetic hot electrons to the NMSB molecule.

13.
J Phys Chem Lett ; 14(40): 8948-8955, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769041

RESUMO

In the search for effective radiosensitizers for tumor cells, halogenated uracils have attracted more attention due to their large cross section for dissociation upon the attachment of low-energy electrons. In this study, we investigated dissociative electron attachment (DEA) to 5-iodo-4-thio-2'-deoxyuridine, a potential radiosensitizer using a crossed electron-molecule beam experiment coupled with quadrupole mass spectrometry. The experimental results were supported by calculations on the threshold energies of formed anions and transition state calculations. We show that low-energy electrons with kinetic energies near 0 eV may effectively decompose the molecule upon DEA. The by far most abundant anion observed corresponds to the iodine anion (I-). Due to the associated bond cleavage, a radical site is formed at the C5 position, which may initiate strand break formation if the molecule is incorporated into a DNA strand. Our results reflect the conclusion from previous radiolysis studies with the title compound, suggesting its potential as a radiosensitizer.


Assuntos
Elétrons , Radiossensibilizantes , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Tiouridina , Ânions
14.
RSC Adv ; 11(51): 32425-32434, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35495526

RESUMO

Nicotinamide (C6H6N2O) is a biologically relevant molecule. This compound has several important roles related to the anabolic and metabolic processes that take place in living organisms. It is also used as a radiosensitizer in tumor therapy. As a result of the interaction of high-energy radiation with matter, low-energy electrons are also released, which can also interact with other molecules, forming several types of ions. In the present investigation, dissociative electron attachment to C6H6N2O has been studied in a crossed electron-molecular beams experiment in the electron energy range of about 0-15 eV. In the experiment, six anionic species were detected: C6H5N2O-, C5H4N-, NCO-, O-/NH2 -, and CN-, with NCO- being the most prominent anion. We also provide detailed computational results regarding the energetic thresholds and pathways of the respective dissociative electron attachment (DEA) channels. The experimental results are compared with the theoretical ones and on this basis, the possible DEA reactions for the formation of anions at a given resonance energy were assigned as well as the generation of neutrals fragments such as pyridine and its several derivatives and radicals are predicted. The pyridine ring seems to stay intact during the DEA process.

15.
Eur Phys J D At Mol Opt Phys ; 75(10): 274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744506

RESUMO

Studies on electron interactions with formamide (FA) clusters promote scientific interest as a model system to understand phenomena relevant to astrophysical, prebiotic, and radiobiological processes. In this work, mass spectrometric detection of cationic species for both small bare and microhydrated formamide clusters was performed at an electron ionization of 70 eV. Furthermore, a comparative analysis of the cluster spectra with the literature-reported gas-phase spectra is presented and discussed, revealing different reaction channels affected by the cluster environment. This study is essential in developing our understanding of both low-energy electron phenomena in clusters that can bridge the complexity gap between gas and realistic systems and the effect of hydration on electron-induced processes.

16.
J Phys Chem B ; 124(27): 5600-5613, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32539395

RESUMO

Efficient radiotherapy requires the concomitant use of ionizing radiation (IR) and a radiosensitizer. In the present work uracil-5-yl O-sulfamate (SU) is tested against its radiosensitizing potential. The compound possesses appropriate dissociative electron attachment (DEA) characteristics calculated at the M06-2X/6-31++G(d,p) level. Crossed electron-molecular beam experiments in the gas phase demonstrate that SU undergoes efficient DEA processes, and the single C-O or S-O bond dissociations account for the majority of fragments induced by electron attachment. Most DEAs proceed already for electrons with kinetic energies of ∼0 eV, which is supported by the exothermic thresholds calculated at the M06-2X/aug-cc-pVTZ level. However, in water solution under reductive conditions and physiological pH, SU does not undergo radiolysis, which demonstrates the crucial influence of aqueous environment on the radiosensitizing properties of modified nucleosides.


Assuntos
Radiossensibilizantes , Uracila , Elétrons , Ácidos Sulfônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA