Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36897571

RESUMO

Hormone secretion from pancreatic islets is essential for glucose homeostasis, and loss or dysfunction of islet cells is a hallmark of type 2 diabetes. Maf transcription factors are crucial for establishing and maintaining adult endocrine cell function. However, during pancreas development, MafB is not only expressed in insulin- and glucagon-producing cells, but also in Neurog3+ endocrine progenitor cells, suggesting additional functions in cell differentiation and islet formation. Here, we report that MafB deficiency impairs ß cell clustering and islet formation, but also coincides with loss of neurotransmitter and axon guidance receptor gene expression. Moreover, the observed loss of nicotinic receptor gene expression in human and mouse ß cells implied that signaling through these receptors contributes to islet cell migration/formation. Inhibition of nicotinic receptor activity resulted in reduced ß cell migration towards autonomic nerves and impaired ß cell clustering. These findings highlight a novel function of MafB in controlling neuronal-directed signaling events required for islet formation.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Adulto , Animais , Humanos , Glucagon/genética , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Pâncreas/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo
2.
Diabetologia ; 67(2): 356-370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032369

RESUMO

AIMS/HYPOTHESIS: Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo. METHODS: Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo. RESULTS: Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression. CONCLUSIONS/INTERPRETATION: RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Humanos , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Derivação Gástrica/métodos , Células L , Diabetes Mellitus Tipo 2/metabolismo , RNA , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Colesterol , RNA Mensageiro , Glicemia/metabolismo
3.
EMBO J ; 39(1): e100882, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31750562

RESUMO

Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic ß cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Intolerância à Glucose/etiologia , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Metanfetamina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Estimulantes do Sistema Nervoso Central/toxicidade , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Exposição Materna/efeitos adversos , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia
4.
J Biol Chem ; 294(18): 7377-7387, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30862673

RESUMO

The aquaglyceroporins are a subfamily of aquaporins that conduct both water and glycerol. Aquaporin-3 (AQP3) has an important physiological function in renal water reabsorption, and AQP3-mediated hydrogen peroxide (H2O2) permeability can enhance cytokine signaling in several cell types. The related aquaglyceroporin AQP7 is required for dendritic cell chemokine responses and antigen uptake. Selective small-molecule inhibitors are desirable tools for investigating the biological and pathological roles of these and other AQP isoforms. Here, using a calcein fluorescence quenching assay, we screened a library of 7360 drug-like small molecules for inhibition of mouse AQP3 water permeability. Hit confirmation and expansion with commercially available substances identified the ortho-chloride-containing compound DFP00173, which inhibited mouse and human AQP3 with an IC50 of ∼0.1-0.4 µm but had low efficacy toward mouse AQP7 and AQP9. Surprisingly, inhibitor specificity testing revealed that the methylurea-linked compound Z433927330, a partial AQP3 inhibitor (IC50, ∼0.7-0.9 µm), is a potent and efficacious inhibitor of mouse AQP7 water permeability (IC50, ∼0.2 µm). Stopped-flow light scattering measurements confirmed that DFP00173 and Z433927330 inhibit AQP3 glycerol permeability in human erythrocytes. Moreover, DFP00173, Z433927330, and the previously identified AQP9 inhibitor RF03176 blocked aquaglyceroporin H2O2 permeability. Molecular docking to AQP3, AQP7, and AQP9 homology models suggested interactions between these inhibitors and aquaglyceroporins at similar binding sites. DFP00173 and Z433927330 constitute selective and potent AQP3 and AQP7 inhibitors, respectively, and contribute to a set of isoform-specific aquaglyceroporin inhibitors that will facilitate the evaluation of these AQP isoforms as drug targets.


Assuntos
Aquaporina 3/antagonistas & inibidores , Aquaporinas/antagonistas & inibidores , Tiofenos/farmacologia , Animais , Células CHO , Permeabilidade da Membrana Celular , Cricetulus , Eritrócitos/metabolismo , Glicerol/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiofenos/química , Água/metabolismo
5.
Diabetologia ; 59(4): 744-54, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26733006

RESUMO

AIMS/HYPOTHESIS: The Gq-coupled 5-hydroxytryptamine 2B (5-HT2B) receptor is known to regulate the proliferation of islet beta cells during pregnancy. However, the role of serotonin in the control of insulin release is still controversial. The aim of the present study was to explore the role of the 5-HT2B receptor in the regulation of insulin secretion in mouse and human islets, as well as in clonal INS-1(832/13) cells. METHODS: Expression of HTR2B mRNA and 5-HT2B protein was examined with quantitative real-time PCR, RNA sequencing and immunohistochemistry. α-Methyl serotonin maleate salt (AMS), a serotonin receptor agonist, was employed for robust 5-HT2B receptor activation. Htr2b was silenced with small interfering RNA in INS-1(832/13) cells. Insulin secretion, Ca(2+) response and oxygen consumption rate were determined. RESULTS: Immunohistochemistry revealed that 5-HT2B is expressed in human and mouse islet beta cells. Activation of 5-HT2B receptors by AMS enhanced glucose-stimulated insulin secretion (GSIS) in human and mouse islets as well as in INS-1(832/13) cells. Silencing Htr2b in INS-1(832/13) cells led to a 30% reduction in GSIS. 5-HT2B receptor activation produced robust, regular and sustained Ca(2+) oscillations in mouse islets with an increase in both peak distance (period) and time in the active phase as compared with control. Enhanced insulin secretion and Ca(2+) changes induced by AMS coincided with an increase in oxygen consumption in INS-1(832/13) cells. CONCLUSIONS/INTERPRETATION: Activation of 5-HT2B receptors stimulates GSIS in beta cells by triggering downstream changes in cellular Ca(2+) flux that enhance mitochondrial metabolism. Our findings suggest that serotonin and the 5-HT2B receptor stimulate insulin release.


Assuntos
Glucose/farmacologia , Ilhotas Pancreáticas/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Técnicas In Vitro , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Receptor 5-HT2B de Serotonina/genética
6.
Biochem Biophys Res Commun ; 468(4): 629-35, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26546820

RESUMO

Lack or dysfunction of insulin producing ß cells results in the development of type 1 and type 2 diabetes mellitus, respectively. Insulin secretion is controlled by metabolic stimuli (glucose, fatty acids), but also by monoamine neurotransmitters, like dopamine, serotonin, and norepinephrine. Intracellular monoamine levels are controlled by monoamine oxidases (Mao) A and B. Here we show that MaoA and MaoB are expressed in mouse islet ß cells and that inhibition of Mao activity reduces insulin secretion in response to metabolic stimuli. Moreover, analysis of MaoA and MaoB protein expression in mouse and human type 2 diabetic islets shows a significant reduction of MaoB in type 2 diabetic ß cells suggesting that loss of Mao contributes to ß cell dysfunction. MaoB expression was also reduced in ß cells of MafA-deficient mice, a mouse model for ß cell dysfunction, and biochemical studies showed that MafA directly binds to and activates MaoA and MaoB transcriptional control sequences. Taken together, our results show that MaoA and MaoB expression in pancreatic islets is required for physiological insulin secretion and lost in type 2 diabetic mouse and human ß cells. These findings demonstrate that regulation of monoamine levels by Mao activity in ß cells is pivotal for physiological insulin secretion and that loss of MaoB expression may contribute to the ß cell dysfunction in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição Maf Maior/biossíntese , Monoaminoxidase/metabolismo , Animais , Células Cultivadas , Humanos , Secreção de Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ativação Transcricional
7.
Nat Genet ; 38(5): 583-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16642022

RESUMO

An appropriate beta cell mass is pivotal for the maintenance of glucose homeostasis. Both insulin and IGF-1 are important in regulation of beta cell growth and function (reviewed in ref. 2). To define the roles of these hormones directly, we created a mouse model lacking functional receptors for both insulin and IGF-1 only in beta cells (betaDKO), as the hormones have overlapping mechanisms of action and activate common downstream proteins. Notably, betaDKO mice were born with a normal complement of islet cells, but 3 weeks after birth, they developed diabetes, in contrast to mild phenotypes observed in single mutants. Normoglycemic 2-week-old betaDKO mice manifest reduced beta cell mass, reduced expression of phosphorylated Akt and the transcription factor MafA, increased apoptosis in islets and severely compromised beta cell function. Analyses of compound knockouts showed a dominant role for insulin signaling in regulating beta cell mass. Together, these data provide compelling genetic evidence that insulin and IGF-I-dependent pathways are not critical for development of beta cells but that a loss of action of these hormones in beta cells leads to diabetes. We propose that therapeutic improvement of insulin and IGF-I signaling in beta cells might protect against type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Fator de Crescimento Insulin-Like I/fisiologia , Insulina/fisiologia , Ilhotas Pancreáticas/fisiopatologia , Animais , Diabetes Mellitus Experimental/etiologia , Humanos , Espectrometria de Massas , Camundongos , Camundongos Knockout , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/fisiologia , Receptor de Insulina/genética , Receptor de Insulina/fisiologia
8.
Cancer Med ; 13(9): e7187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686617

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with limited treatment options, illustrating an urgent need to identify new drugable targets in PDACs. OBJECTIVE: Using the similarities between tumor development and normal embryonic development, which is accompanied by rapid cell expansion, we aimed to identify and characterize embryonic signaling pathways that were reinitiated during tumor formation and expansion. METHODS AND RESULTS: Here, we report that the transcription factors E2F1 and E2F8 are potential key regulators in PDAC. E2F1 and E2F8 RNA expression is mainly localized in proliferating cells in the developing pancreas and in malignant ductal cells in PDAC. Silencing of E2F1 and E2F8 in PANC-1 pancreatic tumor cells inhibited cell proliferation and impaired cell spreading and migration. Moreover, loss of E2F1 also affected cell viability and apoptosis with E2F expression in PDAC tissues correlating with expression of apoptosis and mitosis pathway genes, suggesting that E2F factors promote cell cycle regulation and tumorigenesis in PDAC cells. CONCLUSION: Our findings illustrate that E2F1 and E2F8 transcription factors are expressed in pancreatic progenitor and PDAC cells, where they contribute to tumor cell expansion by regulation of cell proliferation, viability, and cell migration making these genes attractive therapeutic targets and potential prognostic markers for pancreatic cancer.


Assuntos
Apoptose , Carcinoma Ductal Pancreático , Movimento Celular , Proliferação de Células , Fator de Transcrição E2F1 , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Animais , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sobrevivência Celular/genética , Camundongos
9.
Nat Commun ; 14(1): 600, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737436

RESUMO

Aquaglyceroporin 7 (AQP7) facilitates glycerol flux across the plasma membrane with a critical physiological role linked to metabolism, obesity, and associated diseases. Here, we present the single-particle cryo-EM structure of AQP7 determined at 2.55 Å resolution adopting two adhering tetramers, stabilized by extracellularly exposed loops, in a configuration like that of the well-characterized interaction of AQP0 tetramers. The central pore, in-between the four monomers, displays well-defined densities restricted by two leucine filters. Gas chromatography mass spectrometry (GC/MS) results show that the AQP7 sample contains glycerol 3-phosphate (Gro3P), which is compatible with the identified features in the central pore. AQP7 is shown to be highly expressed in human pancreatic α- and ß- cells suggesting that the identified AQP7 octamer assembly, in addition to its function as glycerol channel, may serve as junction proteins within the endocrine pancreas.


Assuntos
Aquagliceroporinas , Aquaporinas , Ilhotas Pancreáticas , Humanos , Aquaporinas/metabolismo , Glicerol/metabolismo , Microscopia Crioeletrônica , Ilhotas Pancreáticas/metabolismo
10.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36656641

RESUMO

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina/genética , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição PAX5/metabolismo
11.
Acta Physiol (Oxf) ; 234(2): e13761, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34978761

RESUMO

AIMS: Reduced expression of exocytotic genes is associated with functional defects in insulin exocytosis contributing to impaired insulin secretion and type 2 diabetes (T2D) development. MAFA and MAFB transcription factors regulate ß-cell physiology, and their gene expression is reduced in T2D ß cells. We investigate if loss of MAFA and MAFB in human ß cells contributes to T2D progression by regulating genes required for insulin exocytosis. METHODS: Three approaches were performed: (1) RNAseq analysis with the focus on exocytosis-related genes in MafA-/- mouse islets, (2) correlational analysis between MAFA, MAFB and exocytosis-related genes in human islets and (3) MAFA and MAFB silencing in human islets and EndoC-ßH1 cells followed by functional in vitro studies. RESULTS: The expression of 30 exocytosis-related genes was significantly downregulated in MafA-/- mouse islets. In human islets, the expression of 29 exocytosis-related genes correlated positively with MAFA and MAFB. Eight exocytosis-related genes were downregulated in MafA-/- mouse islets and positively correlated with MAFA and MAFB in human islets. From this analysis, the expression of RAB3A, STXBP1, UNC13A, VAMP2, NAPA, NSF, STX1A and SYT7 was quantified after acute MAFA or MAFB silencing in EndoC-ßH1 cells and human islets. MAFA and MAFB silencing resulted in impaired insulin secretion and reduced STX1A, SYT7 and STXBP1 (EndoC-ßH1) and STX1A (human islets) mRNA expression. STX1A and STXBP1 protein expression was also impaired in islets from T2D donors which lack MAFA expression. CONCLUSION: Our data indicate that STXBP1 and STX1A are important MAFA/B-regulated exocytosis genes which may contribute to insulin exocytosis defects observed in MAFA-deficient human T2D ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Exocitose , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo , Camundongos
12.
Front Neurosci ; 16: 858049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600617

RESUMO

Persons with type 2 diabetes born in the regions of famine exposures have disproportionally elevated risk of vision-threatening proliferative diabetic retinopathy (PDR) in adulthood. However, the underlying mechanisms are not known. In the present study, we aimed to investigate the plausible molecular factors underlying progression to PDR. To study the association of genetic variants with PDR under the intrauterine famine exposure, we analyzed single nucleotide polymorphisms (SNPs) that were previously reported to be associated with type 2 diabetes, glucose, and pharmacogenetics. Analyses were performed in the population from northern Ukraine with a history of exposure to the Great Ukrainian Holodomor famine [the Diagnostic Optimization and Treatment of Diabetes and its Complications in the Chernihiv Region (DOLCE study), n = 3,583]. A validation of the top genetic findings was performed in the Hong Kong diabetes registry (HKDR, n = 730) with a history of famine as a consequence of the Japanese invasion during WWII. In DOLCE, the genetic risk for PDR was elevated for the variants in ADRA2A, PCSK9, and CYP2C19*2 loci, but reduced at PROX1 locus. The association of ADRA2A loci with the risk of advanced diabetic retinopathy in famine-exposed group was further replicated in HKDR. The exposure of embryonic retinal cells to starvation for glucose, mimicking the perinatal exposure to famine, resulted in sustained increased expression of Adra2a and Pcsk9, but decreased Prox1. The exposure to starvation exhibited a lasting inhibitory effects on neurite outgrowth, as determined by neurite length. In conclusion, a consistent genetic findings on the famine-linked risk of ADRA2A with PDR indicate that the nerves may likely to be responsible for communicating the effects of perinatal exposure to famine on the elevated risk of advanced stages of diabetic retinopathy in adults. These results suggest the possibility of utilizing neuroprotective drugs for the prevention and treatment of PDR.

13.
J Clin Endocrinol Metab ; 107(5): 1303-1316, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35021220

RESUMO

CONTEXT: Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mothers and children. Offspring of women with EP anemia often have low birth weight, which increases risk for cardiometabolic diseases, including type 2 diabetes (T2D), later in life. OBJECTIVE: We aimed to elucidate mechanisms underlying developmental programming of adult cardiometabolic disease, including epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth. METHODS: We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEGs) in UCB exposed to maternal EP anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function. RESULTS: The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming, which included the birth weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL, which potentially influence beta-cell development. Insulin levels were lower in EP anemia-exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of mothers with EP anemia. CONCLUSIONS: Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.


Assuntos
Anemia , Diabetes Mellitus Tipo 2 , Adulto , Anemia/genética , Criança , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Sangue Fetal/metabolismo , Desenvolvimento Fetal/genética , Humanos , Recém-Nascido , Insulina/metabolismo , Gravidez , Transcriptoma
14.
Nat Commun ; 13(1): 6363, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289205

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic ß-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in ß-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFNα-induced antigen processing and presentation, including MHC Class Ι and Class ΙΙ expression, enhancing their survival against CD8+ T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in ß-cell development and support TYK2 inhibition in adult ß-cells as a potent therapeutic target to halt T1D progression.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Insulinas/metabolismo , Interferon-alfa/farmacologia , Interferon-alfa/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , TYK2 Quinase/genética , TYK2 Quinase/metabolismo , Células Secretoras de Insulina
15.
Acta Ophthalmol ; 100(2): e539-e545, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34169655

RESUMO

PURPOSE: Intrauterine undernutrition is associated with increased risk of type 2 diabetes. Children born premature or small for gestational age were reported to have abnormal retinal vascularization. However, whether intrauterine famine act as a trigger for diabetes complications, including retinopathy, is unknown. The aim of the current study was to evaluate long-term effects of perinatal famine on the risk of proliferative diabetic retinopathy (PDR). METHODS: We studied the risk for PDR among type 2 diabetes patients exposed to perinatal famine in two independent cohorts: the Ukrainian National Diabetes Registry (UNDR) and the Hong Kong Diabetes Registry (HKDR). We analysed individuals born during the Great Famine (the Holodomor, 1932-1933) and the WWII (1941-1945) famine in 101 095 (3601 had PDR) UNDR participants. Among 3021 (251 had PDR) HKDR participants, we studied type 2 diabetes patients exposed to perinatal famine during the WWII Japanese invasion in 1942-1945. RESULTS: During the Holodomor and WWII, perinatal famine was associated with a 1.76-fold (p = 0.019) and 3.02-fold (p = 0.001) increased risk of severe PDR in the UNDR. The risk for PDR was 1.66-fold elevated among individuals born in 1942 in the HKDR (p < 0.05). The associations between perinatal famine and PDR remained statistically significant after corrections for HbA1c in available 18 507 UNDR (padditive interaction < 0.001) and in 3021 HKDR type 2 diabetes patients (p < 0.05). CONCLUSION: In conclusion, type 2 diabetes patients, exposed to perinatal famine, have increased risk of PDR compared to those without perinatal famine exposure. Further studies are needed to understand the underlying mechanisms and to extend this finding to other diabetes complications.


Assuntos
Retinopatia Diabética/epidemiologia , Fome Epidêmica/estatística & dados numéricos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Hong Kong/epidemiologia , Humanos , Pessoa de Meia-Idade , Gravidez , Sistema de Registros , Medição de Risco , Ucrânia/epidemiologia
16.
Life Sci Alliance ; 5(12)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948367

RESUMO

Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (<i>GCG</i>, 56%), amylin (<i>IAPP</i>, 52%), insulin (<i>INS</i>, 44%), and somatostatin (<i>SST</i>, 24%). Inhibition of two DEGs, <i>UNC5D</i> and <i>SERPINE2</i>, impaired glucose-stimulated insulin secretion and impacted cell survival in a human ß-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 2/genética , Glucagon/genética , Glucagon/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Serpina E2/metabolismo
17.
Stem Cells ; 28(1): 45-56, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19890880

RESUMO

Fibroblast growth factor (FGF) signaling controls axis formation during endoderm development. Studies in lower vertebrates have demonstrated that FGF2 primarily patterns the ventral foregut endoderm into liver and lung, whereas FGF4 exhibits broad anterior-posterior and left-right patterning activities. Furthermore, an inductive role of FGF2 during dorsal pancreas formation has been shown. However, whether FGF2 plays a similar role during human endoderm development remains unknown. Here, we show that FGF2 specifies hESC-derived definitive endoderm (DE) into different foregut lineages in a dosage-dependent manner. Specifically, increasing concentrations of FGF2 inhibits hepatocyte differentiation, whereas intermediate concentration of FGF2 promotes differentiation toward a pancreatic cell fate. At high FGF2 levels specification of midgut endoderm into small intestinal progenitors is increased at the expense of PDX1(+) pancreatic progenitors. High FGF2 concentrations also promote differentiation toward an anterior foregut pulmonary cell fate. Finally, by dissecting the FGF receptor intracellular pathway that regulates pancreas specification, we demonstrate for the first time to the best of our knowledge that induction of PDX1(+) pancreatic progenitors relies on FGF2-mediated activation of the MAPK signaling pathway. Altogether, these observations suggest a broader gut endodermal patterning activity of FGF2 that corresponds to what has previously been advocated for FGF4, implying a functional switch from FGF4 to FGF2 during evolution. Thus, our results provide new knowledge of how cell fate specification of human DE is controlled-facts that will be of great value for future regenerative cell therapies.


Assuntos
Diferenciação Celular , Linhagem da Célula , Sistema Digestório/metabolismo , Células-Tronco Embrionárias/metabolismo , Endoderma/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Gástrula/metabolismo , Ativinas/metabolismo , Animais , Evolução Biológica , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/embriologia , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/efeitos dos fármacos , Endoderma/citologia , Endoderma/efeitos dos fármacos , Gástrula/citologia , Gástrula/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Intestino Delgado/embriologia , Intestino Delgado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pâncreas/embriologia , Pâncreas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Tempo , Transativadores/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt3
18.
Front Cell Dev Biol ; 9: 726852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869314

RESUMO

Perinatal exposure to starvation is a risk factor for development of severe retinopathy in adult patients with diabetes. However, the underlying mechanisms are not completely understood. In the present study, we shed light on molecular consequences of exposure to short-time glucose starvation on the transcriptome profile of mouse embryonic retinal cells. We found a profound downregulation of genes regulating development of retinal neurons, which was accompanied by reduced expression of genes encoding for glycolytic enzymes and glutamatergic signaling. At the same time, glial and vascular markers were upregulated, mimicking the diabetes-associated increase of angiogenesis-a hallmark of pathogenic features in diabetic retinopathy. Energy deprivation as a consequence of starvation to glucose seems to be compensated by upregulation of genes involved in fatty acid elongation. Results from the present study demonstrate that short-term glucose deprivation during early fetal life differentially alters expression of metabolism- and function-related genes and could have detrimental and lasting effects on gene expression in the retinal neurons, glial cells, and vascular elements and thus potentially disrupting gene regulatory networks essential for the formation of the retinal neurovascular unit. Abnormal developmental programming during retinogenesis may serve as a trigger of reactive gliosis, accelerated neurodegeneration, and increased vascularization, which may promote development of severe retinopathy in patients with diabetes later in life.

19.
Metabolism ; 118: 154734, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33631146

RESUMO

The amplification of glucose-stimulated insulin secretion (GSIS) through incretin signaling is critical for maintaining physiological glucose levels. Incretins, like glucagon-like peptide 1 (GLP1), are a target of type 2 diabetes drugs aiming to enhance insulin secretion. Here we show that the protein phosphatase 1 inhibitor protein 1A (PPP1R1A), is expressed in ß-cells and that its expression is reduced in dysfunctional ß-cells lacking MafA and upon acute MafA knock down. MafA is a central regulator of GSIS and ß-cell function. We observed a strong correlation of MAFA and PPP1R1A mRNA levels in human islets, moreover, PPP1R1A mRNA levels were reduced in type 2 diabetic islets and positively correlated with GLP1-mediated GSIS amplification. PPP1R1A silencing in INS1 (832/13) ß-cells impaired GSIS amplification, PKA-target protein phosphorylation, mitochondrial coupling efficiency and also the expression of critical ß-cell marker genes like MafA, Pdx1, NeuroD1 and Pax6. Our results demonstrate that the ß-cell transcription factor MafA is required for PPP1R1A expression and that reduced ß-cell PPP1R1A levels impaired ß-cell function and contributed to ß-cell dedifferentiation during type 2 diabetes. Loss of PPP1R1A in type 2 diabetic ß-cells may explains the unresponsiveness of type 2 diabetic patients to GLP1R-based treatments.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Proteína Fosfatase 1/genética , Animais , Desdiferenciação Celular , Linhagem Celular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Fosforilação , RNA Mensageiro/genética
20.
Mol Cell Biol ; 26(15): 5735-43, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16847327

RESUMO

The MafA transcription factor is both critical to islet beta-cell function and has a unique pancreatic cell-type-specific expression pattern. To localize the potential transcriptional regulatory region(s) involved in directing expression to the beta cell, areas of identity within the 5' flanking region of the mouse, human, and rat mafA genes were found between nucleotides -9389 and -9194, -8426 and -8293, -8118 and -7750, -6622 and -6441, -6217 and -6031, and -250 and +56 relative to the transcription start site. The identity between species was greater than 75%, with the highest found between bp -8118 and -7750 ( approximately 94%, termed region 3). Region 3 was the only upstream mammalian conserved region found in chicken mafA (88% identity). In addition, region 3 uniquely displayed beta-cell-specific activity in cell-line-based reporter assays. Important regulators of beta-cell formation and function, PDX-1, FoxA2, and Nkx2.2, were shown to specifically bind to region 3 in vivo using the chromatin immunoprecipitation assay. Mutational and functional analyses demonstrated that FoxA2 (bp -7943 to -7910), Nkx2.2 (bp -7771 to -7746), and PDX-1 (bp -8087 to -8063) mediated region 3 activation. Consistent with a role in transcription, small interfering RNA-mediated knockdown of PDX-1 led to decreased mafA mRNA production in INS-1-derived beta-cell lines (832/13 and 832/3), while MafA expression was undetected in the pancreatic epithelium of Nkx2.2 null animals. These results suggest that beta-cell-type-specific mafA transcription is principally controlled by region 3-acting transcription factors that are essential in the formation of functional beta cells.


Assuntos
Regulação da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição Maf Maior , Sequências Reguladoras de Ácido Nucleico , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Galinhas , Fator 3-beta Nuclear de Hepatócito/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Humanos , Células Secretoras de Insulina/citologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Alinhamento de Sequência , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA