Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 42(8): 2849-2861, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34661780

RESUMO

Alzheimer's disease (AD), the most frequently diagnosed dementia, is a senile neurodegenerative disorder characterized by amnesia and cognitive dysfunction. Unfortunately, there are still no successful strategies to prevent AD progression. Thus, the vast majority of research focuses on recognizing risk factors for developing and progressing this disease. Human spirochetes, fungi, Borrelia burgdorferi, Chlamydophila pneumoniae, Helicobacter pylori, and human herpes simplex virus type 1 (HSV-1) have all been implicated in the development and progression of AD. Identifying microRNAs (miRs) encoded by DNA viruses has indicated that viruses can be evolved to exploit RNA silencing to regulate host and viral genes. Similar to host miR, v-miR can interact with the 3' untranslated region (UTR) of the target mRNA to regulate gene expression. Although HSV-1 can also encode various miRs, their significance in the development and progression of AD is still unclear. In the present study, utilizing the bioinformatics approach (R software and related packages), we analyzed the differentially expressed genes (DEGs) in AD samples (grey matter) of GSE37263 dataset obtained from the NCBI Gene Expression Omnibus (GEO). Then, the sequences of HSV-1-encoded-miRs were retrieved from miRbase, and their targets were predicted by miRDB. Afterward, the common genes between downregulated DEGs in AD and targets of HSV-1-encoded miRs were identified to shed new light on the relationship between HSV-1 infection and AD development. Our results have indicated that HSV-1-encoded-miRs can target the downregulated DEGs in AD, and these aberrant interactions can offer valuable diagnostic/prognostic biomarkers for affected patients.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , MicroRNAs , Regiões 3' não Traduzidas , Doença de Alzheimer/genética , Biomarcadores/metabolismo , Herpes Simples/genética , Herpesvirus Humano 1/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
2.
Immunol Invest ; 51(2): 246-265, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32981399

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) has posed a serious threat to public health. There is an urgent need for discovery methods for the prevention and treatment of COVID-19 infection. Understanding immunogenicity together with immune responses are expected to provide further information about this virus. We hope that this narrative review article may create new insights for researchers to take great strides toward designing vaccines and novel therapies in the near future. The functional properties of the immune system in COVID-19 infection is not exactly clarified yet. This is compounded by the many gaps in our understanding of the SARS-CoV-2 immunogenicity properties. Possible immune responses according to current literature are discussed as the first line of defense and acquired immunity. Here, we focus on proposed modern preventive immunotherapy methods in COVID-19 infection.


Assuntos
COVID-19 , Imunidade Adaptativa , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
3.
J Cell Physiol ; 236(4): 2443-2458, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32960465

RESUMO

Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteína Homeobox Nanog/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Oncogênicas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Homeobox Nanog/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Oncogênicas/genética , Transdução de Sinais
4.
Arch Virol ; 166(3): 675-696, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33462671

RESUMO

The number of descriptions of emerging viruses has grown at an unprecedented rate since the beginning of the 21st century. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the third highly pathogenic coronavirus that has introduced itself into the human population in the current era, after SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Molecular and cellular studies of the pathogenesis of this novel coronavirus are still in the early stages of research; however, based on similarities of SARS-CoV-2 to other coronaviruses, it can be hypothesized that the NF-κB, cytokine regulation, ERK, and TNF-α signaling pathways are the likely causes of inflammation at the onset of COVID-19. Several drugs have been prescribed and used to alleviate the adverse effects of these inflammatory cellular signaling pathways, and these might be beneficial for developing novel therapeutic modalities against COVID-19. In this review, we briefly summarize alterations of cellular signaling pathways that are associated with coronavirus infection, particularly SARS-CoV and MERS-CoV, and tabulate the therapeutic agents that are currently approved for treating other human diseases.


Assuntos
COVID-19/patologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/fisiologia , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Inflamação/patologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , NF-kappa B/metabolismo , SARS-CoV-2/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Tratamento Farmacológico da COVID-19
5.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639059

RESUMO

Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.


Assuntos
Antígenos B7/imunologia , Imunomodulação , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Antígenos B7/antagonistas & inibidores , Antígenos B7/química , Antígenos B7/genética , Biomarcadores Tumorais , Proteínas de Transporte , Ensaios Clínicos como Assunto , Regulação da Expressão Gênica , Humanos , Imunomodulação/efeitos dos fármacos , Imunomodulação/genética , Terapia de Alvo Molecular , Família Multigênica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Resultado do Tratamento
6.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638729

RESUMO

Preclinical studies have indicated that T-cell immunoglobulin and ITIM domain (TIGIT) can substantially attenuate anti-tumoral immune responses. Although multiple clinical studies have evaluated the significance of TIGIT in patients with solid cancers, their results remain inconclusive. Thus, we conducted the current systematic review and meta-analysis based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) to determine its significance in patients with solid cancers. We systematically searched the Web of Science, Embase, PubMed, and Scopus databases to obtain peer-reviewed studies published before September 20, 2020. Our results have shown that increased TIGIT expression has been significantly associated with inferior overall survival (OS) (HR = 1.42, 95% CI: 1.11-1.82, and p-value = 0.01). Besides, the level of tumor-infiltrating TIGIT+CD8+ T-cells have been remarkably associated inferior OS and relapse-free survival (RFS) of affected patients (HR = 2.17, 95% CI: 1.43-3.29, and p-value < 0.001, and HR = 1.89, 95% CI: 1.36-2.63, and p-value < 0.001, respectively). Also, there is a strong positive association between TIGIT expression with programmed cell death-1 (PD-1) expression in these patients (OR = 1.71, 95% CI: 1.10-2.68, and p-value = 0.02). In summary, increased TIGIT expression and increased infiltration of TIGIT+CD8+ T-cells can substantially worsen the prognosis of patients with solid cancers. Besides, concerning the observed strong association between TIGIT and PD-1, ongoing clinical trials, and promising preclinical results, PD-1/TIGIT dual blockade can potentially help overcome the immune-resistance state seen following monotherapy with a single immune checkpoint inhibitor in patients with solid cancers.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores Imunológicos/imunologia , Evasão Tumoral , Linfócitos T CD8-Positivos/patologia , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral/patologia , Neoplasias/patologia , Neoplasias/terapia
7.
Inflammopharmacology ; 29(4): 975-986, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34125373

RESUMO

Connective tissue diseases (CTDs) consist of an extensive range of heterogeneous medical conditions, which are caused by immune-mediated chronic inflammation and influences the various connective tissues of the body. They include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis, Sjögren's syndrome, Behcet's disease, and many other autoimmune CTDs. To date, several anti-inflammatory approaches have been developed to reduce the severity of inflammation or its subsequent organ manifestations. As a logical mechanism to harnesses the undesired inflammation, some studies investigated the role of the intrinsic cholinergic anti-inflammatory pathway (CAP) in the modulation of chronic inflammation. Many different experimental and clinical models have been developed to evaluate the therapeutic significance of the CAP in CTDs. On the other hand, an issue that is less emphasized in this regard is the presence of autonomic neuropathy in CTDs, which influences the efficiency of CAP in such clinical settings. This condition occurs during CTDs and is a well-known complication of patients suffering from them. The advantages and limitations of CAP in the control of inflammatory responses and its possible therapeutic benefits in the treatment of CTDs are the main subjects of the current study. Therefore, this narrative review article is provided based on the recent findings of the complicated role of CAP in CTDs which were retrieved by searching Science Direct, PubMed, Google Scholar, and Web of Science. It seems that delineating the complex influences of CAP would be of great interest in designing novel surgical or pharmacological therapeutic strategies for CTDs therapy.


Assuntos
Doenças do Tecido Conjuntivo/metabolismo , Mediadores da Inflamação/metabolismo , Neuroimunomodulação/fisiologia , Transdução de Sinais/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Colinérgicos/farmacologia , Colinérgicos/uso terapêutico , Doenças do Tecido Conjuntivo/imunologia , Doenças do Tecido Conjuntivo/terapia , Humanos , Neuroestimuladores Implantáveis , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Neuroimunomodulação/efeitos dos fármacos , Receptores Nicotínicos/imunologia , Receptores Nicotínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/imunologia
8.
Mol Biol Rep ; 47(5): 3691-3703, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32246247

RESUMO

One of the major barriers in cancer therapy is the resistance to conventional therapies and cancer stem cells (CSCs) are among the main causes of this problem. CD133 as a CSC marker displays stem cell-like properties, tumorigenic capacity, and drug resistance in various cancers. However, the molecular mechanism behind CD133 function in prostate cancer (PC) still remains unclear. This research aimed to illustrate the probabilistic mechanism of CD133-siRNA and paclitaxel in the reduction of chemoresistance in PC cells. To measure the cell viability, migratory capacity, CSCs properties, invasive potential, apoptosis and cell cycle progression of the cells, the MTT, wound healing, spheroid assay, colony formation assay, DAPI staining and flow cytometry assays were applied in the LNCaP cell line, respectively. Also, quantitative real-time PCR (qRT-PCR) and western blot method were used for measuring the expression of CD133 and the effects of CD133 silencing on the AKT/mTOR/c-myc axis and pro-metastatic genes expression. We showed that the CD133-siRNA considerably decreased the CD133 expression. Moreover, CD133-siRNA and paclitaxel treatment significantly decreased cell proliferation and also inhibited the ability of cell migration and invasion and reduced pro-metastatic genes expression. Additionally, we found that the simultaneous use of CD133-siRNA and paclitaxel increased the paclitaxel-induced apoptosis. Our results confirmed that CD133 silencing combined with paclitaxel synergistically could suppress cell migration, invasion, and proliferation and enhance the chemosensitivity compared with mono treatment. Therefore, CD133 silencing therapy could be viewed as a promising and efficient strategy in PC targeted therapies.


Assuntos
Antígeno AC133/metabolismo , Paclitaxel/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Antígeno AC133/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Células-Tronco Neoplásicas/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR
9.
Molecules ; 25(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167431

RESUMO

Since the current treatments have not resulted in the desired outcomes for melanoma patients, there is a need to identify more effective medications. Together with other snake venom proteins, cytotoxin-II has shown promising results in tumoral cells. In this study, recombinant cytotoxin-II (rCTII) was expressed in SHuffle® T7 Express cells, while the epitope mapping of rCTII was performed to reveal the antibody-binding regions of rCTII. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to assess the viability of SK-MEL-3 and HFF-2 cells after treating these cells with rCTII. The qRT-PCR was performed to evaluate the expression levels of matrix metallopeptidase 3 (MMP-3), SMAD2, SMAD3, caspase-8, caspase-9, and miR-214 in order to reveal the rCTII-induced signaling pathways in melanoma. Our results have shown that two regions of amino acids, 6-16 and 19-44, as predicted epitopes of this toxin, are essential for understanding the toxicity of rCTII. Treating the melanoma cells with rCTII substantially inhibited the transforming growth factor-beta (TGF-ß)-SMAD signaling pathway and down-regulated the expression of MMP-3 and miR-214 as well. This cytotoxin also restored apoptosis mainly via the intrinsic pathway. The down-regulation of MMP-3 and miR-214 might be associated with the anti-metastatic property of rCTII in melanoma. The inhibitory effect of rCTII on the TGF-ß signaling pathway might be associated with increased apoptosis and decreased cancer cell proliferation. It is interesting to see that the IC50 value of rCTII has been lower in the melanoma cells than non-tumoral cells, which may indicate its potential effects as a drug. In conclusion, rCTII, as a novel medication, might serve as a potent and efficient anticancer drug in melanoma.


Assuntos
Citotoxinas/química , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Proteína Smad2/metabolismo , Venenos de Serpentes/química , Fator de Crescimento Transformador beta1/metabolismo , Animais , Apoptose , Proliferação de Células , Sobrevivência Celular , Mapeamento de Epitopos , Epitopos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoglobulina G/química , Concentração Inibidora 50 , MicroRNAs/metabolismo , Naja naja , Metástase Neoplásica , Proteínas Recombinantes/química , Transdução de Sinais , Proteína Smad3/metabolismo
10.
J Cell Physiol ; 234(12): 21642-21661, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31102292

RESUMO

Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.


Assuntos
Antígeno AC133/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Microambiente Tumoral/fisiologia
11.
J Cell Physiol ; 234(9): 14666-14679, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30701535

RESUMO

The lung tissue expresses the cholinergic system including nicotinic acetylcholine receptors (nAChRs) which included in many physiologic and pathologic processes. Mounting evidence revealed that these receptors have important roles in lung carcinogenesis via modulating either stimulatory or inhibitory signaling pathways. Among different members of nicotinic receptors family, alpha7-subtype of nAChR (α7nAChR) is a critical mediator involved in both inflammatory responses and cancers. Several studies have shown that this receptor is the most powerful regulator of responses that stimulate lung cancer processes such as proliferation, angiogenesis, metastasis, and inhibition of apoptosis. Moreover, aside from its roles in the regulation of cancer pathways, there is growing evidence indicating that α7nAChR has profound impacts on lung inflammation through the cholinergic anti-inflammatory pathway. Regarding such diverse effects as well as the critical roles of nicotine as an activator of α7nAChR on lung cancer pathogenesis, its modulation has emerged as a promising target for drug developments. In this review, we aim to highlight the detrimental as well as the possible beneficial influences of α7nAChR downstream signaling cascades in the control of lung inflammation and cancer-associated properties. Consequently, by considering the significant global burden of lung cancer, delineating the complex influences of α7 receptors would be of great interest in designing novel anticancer and anti-inflammatory strategies for the patients suffering from lung cancer.

12.
J Cell Physiol ; 234(7): 10002-10017, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30537109

RESUMO

Cancer stem cells (CSCs) are a small subpopulation of tumor cells that have been identified in most types of cancer. Features that distinguish them from the bulk of tumor cells include their pluripotency, self-renewal capacity, low proliferation rate, and tumor-initiating ability. CSCs are highly malignant, as they confer drug resistance and facilitate tumor progression, relapse, and metastasis. The molecular mechanisms underlying CSC biology are now beginning to be understood. In this context, microRNAs (miRNAs) occupy a prominent place. These endogenous, small noncoding RNA molecules control gene expression at the posttranscriptional level. This study reviews our current understanding of how the misexpression of tumor suppressor and oncogenic miRNAs in CSCs sustain their abundance and malignant properties. We discuss how they partly do so by acting on major CSC signaling pathways, including the Wnt, Notch, Hedgehog, and BMI-1 pathways. Our current knowledge of miRNA functions in CSCs may now be used for cancer diagnostic and prognostic purposes. In addition, when combined with recent technical advances in the in vivo delivery of miRNAs, we are now in an excellent position to develop strategies that harness miRNA interference and replacement technologies for the therapeutic targeting of CSCs.


Assuntos
Biomarcadores Tumorais/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Técnicas de Diagnóstico Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fenótipo , Valor Preditivo dos Testes , Transdução de Sinais
13.
J Cell Physiol ; 234(9): 16043-16053, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30741415

RESUMO

Estrogen receptors (ERs) are involved in the development of many types of malignant tumors, in particular, breast cancer. Among others, ERs affect cell growth, proliferation, and differentiation. The microRNA (miRNA) miR-142-3p has been shown to inhibit carcinogenesis by regulating various cellular processes, including cell cycle progression, cell migration, apoptosis, and invasion. It does so via targeting molecules involved in a range of signaling pathways. We surgically collected 20 ER-positive breast cancer samples, each with matched adjacent normal breast tissue, and measured the expression of miR-142-3p via quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics methods, luciferase reporter assay, qRT-PCR, and western blot analysis were used to assess whether miR-142-3p could target ESR1, which encodes the estrogen receptor, in ER-positive breast cancer cells and patient samples. We also restored miRNA expression and performed cell viability, cytotoxicity, and colony formation assays. Western blot analysis and qRT-PCR were used to study the expression of apoptosis and stemness markers. We found that miR-142-3p is downregulated in ER-positive breast cancers. Restoration of miR-142-3p expression in ER-positive breast cancer cells reduced cell viability, induced apoptosis via the intrinsic pathway and decreased both colony formation and the expression of stem cell markers. Bioinformatic analysis predicted miR-142-3p could bind to 3'-untranslated region ESR1 messenger RNA (mRNA). Consistently, we demonstrated that miR-142-3p reduced luciferase activity in ER-positive breast cancer cells, and decreased ESR1 expression in both mRNA and protein levels. The results revealed miR-142-3p and ESR1 expression correlated negatively in ER-positive breast cancer samples. The results suggest miR-142-3p acts as a tumor suppressor via multiple mechanisms. Thus, restoration of miR-142-3p expression, for example, via miRNA replacement therapy, may represent an effective strategy for the treatment of ER-positive breast cancer patients.

14.
J Cell Physiol ; 234(10): 17714-17726, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30825204

RESUMO

During breast cancer progression, tumor cells acquire multiple malignant features. The transcription factors and cell cycle regulators high mobility group A2 (HMGA2) and BTB and CNC homology 1 (Bach-1) are overexpressed in several cancers, but the mechanistic understanding of how HMGA2 and Bach-1 promote cancer development has been limited. We found that HMGA2 and Bach-1 are overexpressed in breast cancer tissues and their expression correlates positively in tumors but not in normal tissues. Individual HMGA2 or Bach-1 knockdown downregulates expression of both proteins, suggesting a mutual stabilizing effect between the two proteins. Importantly, combined HMGA2 and Bach-1 knockdown additively decrease cell proliferation, migration, epithelial-to-mesenchymal transition, and colony formation, while promoting apoptotic cell death via upregulation of caspase-3 and caspase-9. First the first time, we show that HMGA2 and Bach-1 overexpression in tumors correlate positively and that the proteins cooperatively suppress a broad range of malignant cellular properties, such as proliferation, migration, clonogenicity, and evasion of apoptotic cell death. Thus, our observations suggest that combined targeting of HMGA2 and Bach1 may be an effective therapeutic strategy to treat breast cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Proteína HMGA2/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Regulação para Cima/genética
15.
Cell Immunol ; 322: 15-25, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29103586

RESUMO

Immune system acts as a host defensive mechanism protecting against attacking pathogens and transformed cells, including cancer cells. Th17 cells are a specific subset of T helper lymphocytes determined by high secretion of IL-17 and other inflammatory cytokines. Th17 cells increase tumor progression by activating angiogenesis and immunosuppressive activities. They can also mediate antitumor immune responses through recruiting immune cells into tumors, stimulating effector CD8+ T cells, or surprisingly by altering toward Th1 phenotype and producing IFN-γ, so Th17 cells are supposed as a double-edged sword in cancer. A comprehensive approach to indicating the activity of Th17 cells in tumor progression could help in the planning of new therapeutic approaches specially targeting Th17 cells in cancer.


Assuntos
Tolerância Imunológica/imunologia , Neoplasias/imunologia , Neovascularização Patológica/imunologia , Células Th17/imunologia , Microambiente Tumoral/imunologia , Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/fisiologia , Humanos , Interferon gama/imunologia , Células Th1/citologia , Células Th17/citologia
16.
Gastroenterol Hepatol Bed Bench ; 17(1): 74-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737927

RESUMO

Aim: Due to the capabilities of the mobile application in the self-care of patients, the present study was conducted to design and evaluate a mobile-based self-care application for patients with liver cirrhosis. Background: Liver cirrhosis is a progressive and chronic disease that, if left untreated, leads to liver cancer and, finally, the death of the patient. Methods: This study was conducted in six phases, including determining and confirming the validity of the minimum data set and capabilities for the application, designing a conceptual and logical model and determining the technical capabilities, designing the application, evaluating the prototype usability in a laboratory environment by technical experts, evaluation of the application usability in a real environment by 30 patients with QUIS (Questionnaire of User Interface Satisfaction) questionnaire. Results: The designed application has capabilities such as calculating the patient's MELD score (Model for End-Stage Liver Disease), medication reminder, location in emergency, and conversation with the physician. The results showed that the patients evaluated the application with a score of 7.94 (out of 9 points) at a good level. Conclusion: The self-care application can help patients with liver cirrhosis and their families access the necessary information related to the special care of the patient at any time and place; it also helps better manage the patient's life, improve the quality of life, and monitor the patient. These applications can effectively manage chronic diseases by reducing the burden of referrals and costs.

17.
Pathol Res Pract ; 253: 155012, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071887

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) ranks among the most prevalent gastrointestinal malignancies, with risk factors including smoking, alcohol abuse, diabetes mellitus, obesity, age, family history, and genetic predisposition. Extensive research has focused on unraveling biomarkers and molecular intricacies associated with PDAC. Leveraging data from the Gene Expression Omnibus microarray and single-cell RNA sequencing datasets, our study identified ITGB4 and C19orf33 as potentially differentially expressed genes in PDAC samples when contrasted with non-malignant tissues. Notably, these genes exhibited a strong correlative expression pattern, primarily within ductal cells. Gene Expression Profiling Interactive Analysis corroborated our findings, further confirming the correlation between ITGB4 and C19orf33. Additionally, we conducted experiments involving two pivotal PDAC-related cell lines, MIA PaCa-2 and PANC-1, treated with oxaliplatin and 5-Fluorouracil. We also assessed the expression of these candidate genes in PDAC samples in comparison to adjacent normal tissues. Our findings revealed that C19orf33 is upregulated in PDAC samples, and treatment of PDAC cells with chemotherapeutic agents led to a correlated decrease in the expression of both ITGB4 and C19orf33. These co-expressed and correlated genes are implicated in relevant signaling pathways, suggesting shared biological activities that may contribute to the promotion of metastasis within malignant ductal cells. This study identifies ITGB4 and C19orf33 as key genes potentially shedding light on the molecular mechanisms driving tumorigenesis and metastasis in PDAC. These genes hold promise as potential diagnostic and therapeutic targets, offering valuable insights into the management of this challenging disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Regulação Neoplásica da Expressão Gênica , Integrina beta4/genética , Integrina beta4/metabolismo
18.
Adv Pharm Bull ; 13(3): 551-562, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37646068

RESUMO

Purpose: CD44 plays a pivotal role through tumorigenesis by regulating cancer cell metastasis, stemness, and chemosensitivity and is considered a promising therapeutic target for human cancers, including colorectal cancer (CRC). Therefore, the present research aimed to examine the simultaneous therapeutic effect of CD44 silencing and 5-fluorouracil (5-FU) on in vitro tumorigenesis of CRC cells. Methods: CD44 expression was initially evaluated in TCGA datasets and CRC tissues. Furthermore, functional analysis was performed on HT-29 CRC cells overexpressing CD44. The cells were transfected with CD44 siRNA and then treated with 5-FU. Consequently, to explore the combination therapy effect on cell viability, migration, apoptosis, and chromatin fragmentation, we performed MTT assay, scratch assay, Annexin V/PI staining and DAPI staining assays, respectively. The spheroid and colony formation assays were further employed to investigate stemness features. The gene expression at protein and mRNA levels were explored using western blotting and qPCR. Results: Our findings illustrated that CD44 was significantly overexpressed in CRC tissues compared to normal samples. The suppression of CD44 considerably promoted the chemosensitivity of HT-29 cells to 5-FU by apoptosis induction. Also, the combination therapy led to overexpression of apoptotic genes, including P53, caspase-3, and caspase-9, as well as downregulation of AKT1 expression. Furthermore, CD44 suppression, separately or combined with 5-FU, hindered stemness properties in HT-29 cells via downregulation of Sox2 and Nanog expression. Besides, the combination therapy remarkably downregulated MMPs and suppressed CRC cell migration. Conclusion: Considering its involvement in chemosensitivity to 5-FU, CD44 could be suggested as a potential target for improving the efficiency of CRC chemotherapy.

19.
Ther Adv Chronic Dis ; 14: 20406223231153572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035097

RESUMO

Auto-immune diseases are a form of chronic disorders in which the immune system destroys the body's cells due to a loss of tolerance to self-antigens. Systemic lupus erythematosus (SLE), identified by the production of autoantibodies in different body parts, is one of the most well-known examples of these diseases. Although the etiology of SLE is unclear, the disease's progression may be affected by genetic and environmental factors. As studies in twins provide adequate evidence for genetic involvement in the SLE, other phenomena such as metallization, histone modifications, and alterations in the expression of noncoding RNAs (ncRNAs) also indicate the involvement of epigenetic factors in this disease. Among all the epigenetic alterations, ncRNAs appear to have the most crucial contribution to the pathogenesis of SLE. The ncRNAs' length and size are divided into three main classes: micro RNAs, long noncoding RNAs (LncRNA), and circular RNAs (circRNAs). Accumulating evidence suggests that dysregulations in these ncRNAs contributed to the pathogenesis of SLE. Hence, clarifying the function of these groups of ncRNAs in the pathophysiology of SLE provides a deeper understanding of the disease. It also opens up new opportunities to develop targeted therapies for this disease.

20.
Gene ; 821: 146333, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182674

RESUMO

Liver cancer is one of the most lethal cancers having worldwide prevalence. Despite significant progress in cancer therapy, liver cancer-induced mortality is very high. Nanog, as an essential transcription factor modulating cellular multipotency, causes tumor progression, drug resistance, and preserves stemness properties in various tumors such as liver cancer. Thus, this research was conducted to evaluate the impact of combination therapy of Nanog siRNA/cisplatin on the sensitivity of liver cancer cells to this drug. HepG2 cells were transfected with Nanog siRNA and treated with cisplatin, individually and in combination. Then, it was observed that in transfected HepG2 cells, Nanog expression was significantly reduced at mRNA level and also these cells were sensitized to cisplatin. In addition, to assess the impact of Nanog siRNA and cisplatin individually and in combination on cells' viability, migration capacity, apoptosis, and cell cycle progression, the MTT, wound healing, colony formation assay, Annexin V/PI staining, and flow cytometry assays were applied on HepG2 cells, respectively. Also, the quantitive Real-Time PCR was used to check the expression of stemness-associated genes (CD44, CD133, and Sox2), and apoptosis-related genes (caspase-3, 8, 9, BAX and Bcl2) after combination therapy. It is indicated that the combination of Nanog siRNA and cisplatin significantly reduced proliferation, migration, and colony formation ability, as well as increased apoptosis rate, and cell cycle arrest. Also, it is found that the combination of Nanog siRNA and cisplatin down-regulated the expression of stemness-associated genes and up-regulated apoptosis-related genes in HepG2 cells. Hence, it can be suggested that Nanog inhibition in combination with cisplatin is a potential therapeutic strategy for developing new therapeutic approaches for liver cancer.


Assuntos
Biomarcadores Tumorais/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/genética , Proteína Homeobox Nanog/genética , RNA Interferente Pequeno/farmacologia , Antígeno AC133/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Células Hep G2 , Humanos , Receptores de Hialuronatos/genética , Neoplasias Hepáticas/tratamento farmacológico , Proteína Homeobox Nanog/antagonistas & inibidores , Células-Tronco Neoplásicas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Fatores de Transcrição SOXB1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA