Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunoassay Immunochem ; 43(2): 1955380, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34355634

RESUMO

Despite significant progress in recent years to improve capabilities to diagnose infections at point-of-care (POC), there are still technical hurdles that need to be overcome to ensure proper medical interventions. Current microbial POC tests involve polymerase chain reaction (PCR) or sandwich immunoassay (IA) based detection formats. PCR is highly sensitive but requires complex instrumentation, whereas lateral flow (LF) based IA tests are handheld but lack sensitivity. We present here a portable and sensitive technique by integrating an isothermal RNA amplification approach with IA detection format. The technique comprises i) Nucleic Acid Sequence Based isothermal Amplification (NASBA), ii) amplicon tagging with hapten labeled probes, iii) capturing the amplicon and iv) formation of a sandwich complex with an antibody (Ab) that selectively recognizes the DNA-RNA duplex. The results can be extended to develop an automated, portable and highly sensitive diagnostic platform suitable for POC applications.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , RNA , Imunoensaio , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
2.
Clin Proteomics ; 17: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194356

RESUMO

BACKGROUND: Detection of viral ribo-nucleic acid (RNA) via real-time polymerase chain reaction (RT-PCR) is the gold standard for the detection of Ebola virus (EBOV) during acute infection. However, the earliest window for viral RNA detection in blood samples is 48-72 h post-onset of symptoms. Therefore, efforts to develop additional orthogonal assays using complementary immunological and serological technologies are still needed to provide simplified methodology for field diagnostics. Furthermore, unlike RT-PCR tests, immunoassays that target viral proteins and/or early host responses are less susceptible to sequence erosion due to viral genetic drift. Although virus is shed into the bloodstream from infected cells, the wide dynamic range of proteins in blood plasma makes this a difficult sample matrix for the detection of low-abundant viral proteins. We hypothesized that the isolation of peripheral blood mononuclear cells (PBMCs), which are the first cellular targets of the Ebola virus (EBOV), may provide an enriched source of viral proteins. METHODS: A mouse infection model that employs a mouse-adapted EBOV (MaEBOV) was chosen as a proof-of-principal experimental paradigm to determine if viral proteins present in PBMCs can help diagnose EBOV infection pre-symptomatically. We employed a liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) platform to provide both high sensitivity and specificity for the detection and relative quantitation of viral proteins in PBMCs collected during MaEBOV infection. Blood samples pooled from animals at the post-infection time-points were used to determine the viral load by RT-PCR and purify PBMCs. RESULTS: Using quantitative LC-MS/MS, we detected two EBOV proteins (vp40 and nucleoprotein) in samples collected on Day 2 post-infection, which was also the first day of detectable viremia via RT-PCR. These results were confirmed via western blot which was performed on identical PBMC lysates from each post-infection time point. CONCLUSIONS: While mass spectrometry is not currently amenable to field diagnostics, these results suggest that viral protein enrichment in PBMCs in tandem with highly sensitive immunoassays platforms, could lead to the development of a rapid, high-throughput diagnostic platform for pre-symptomatic detection of EBOV infection.

3.
Methods Mol Biol ; 2822: 51-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907911

RESUMO

The analysis of RNA sequences is crucial to obtain invaluable insights into disease prognosis. Reliable and rapid diagnostic solutions at the site of sample collection contribute toward optimal delivery of medical treatment. For this reason, the development of more sensitive and portable RNA detection techniques are expected to advance current point-of-care (POC) diagnostic capabilities. Advancements of POC diagnostic technologies will also contribute to counter the spread of emerging viruses. Reverse transcriptase polymerase chain reaction (RT-PCR) is the most commonly used technique to identify etiological organisms of infections. However, the need for thermocycler and fluorescent measurement renders RT-PCR less suitable for POC applications. Here, we provide a step-by-step protocol of Nucleic Acid Sequence-Based Amplification (NASBA), a robust isothermal RNA amplification technique, coupled with a portable paper microfluidics detection format.


Assuntos
Microfluídica , Papel , RNA Viral , Humanos , RNA Viral/genética , RNA Viral/análise , Microfluídica/métodos , Microfluídica/instrumentação , Replicação de Sequência Autossustentável/métodos , Sistemas Automatizados de Assistência Junto ao Leito , RNA/análise , RNA/genética
4.
Methods Mol Biol ; 2822: 175-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907919

RESUMO

Oligonucleotide probe tagging and reverse transcriptase polymerase-chain reaction (RT-PCR) are the most widely used techniques currently used for detecting and analyzing RNA. RNA detection using labeled oligonucleotide probe-based approaches is suitable for point-of-care (POC) applications but lacks assay sensitivity, whereas RT-PCR requires complex instrumentation. As an alternative, immunoassay detection formats coupled with isothermal RNA amplification techniques have been proposed for handheld assay development. In this chapter, we describe a robust technique comprising of: (a) target RNA tagging with a complementary oligonucleotide probe labeled with a hapten moiety to form a DNA/RNA duplex hybrid; (b) complexing the DNA/RNA duplex with a pre-coated antibody (Ab) directed at the hapten moiety; (c) sandwich complex formation with an Ab that selectively recognizes the DNA/RNA structural motif; and (d) detection of the sandwich complex using a secondary Ab enzyme conjugate targeting the anti-DNA/RNA Ab followed by standard enzyme-linked immunosorbent assay (ELISA) visualization.


Assuntos
Ensaio de Imunoadsorção Enzimática , RNA , RNA/análise , RNA/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunoensaio/métodos , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/genética , Anticorpos/imunologia , Hibridização de Ácido Nucleico/métodos , DNA/análise
5.
EBioMedicine ; 71: 103506, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34481243

RESUMO

BACKGROUND: Post-translational modifications (PTMs) on proteins can be targeted by antibodies associated with autoimmunity. Despite a growing appreciation for their intrinsic role in disease, there is a lack of highly multiplexed serological assays to characterize the fine specificities of PTM-directed autoantibodies. METHODS: In this study, we used the programmable phage display technology, Phage ImmunoPrecipitation Sequencing (PhIP-Seq), to profile rheumatoid arthritis (RA) associated anti-citrullinated protein antibody (ACPA) reactivities. FINDINGS: Using both unmodified and peptidylarginine deiminase (PAD)-modified phage display libraries consisting of ~250,000 overlapping 90 amino acid peptide tiles spanning the human proteome, PTM PhIP-Seq robustly identified antibodies to citrulline-dependent epitopes. INTERPRETATION: PTM PhIP-Seq was used to quantify key differences among RA patients, including PAD isoform specific ACPA profiles, and thus represents a powerful tool for proteome-scale antibody-binding analyses. FUNDING: This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the US Government. The US Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein. This study was made possible by a National Institute of General Medical Sciences (NIGMS) grant R01 GM136724 (HBL). MFK was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grant T32AR048522. ED was supported by the Rheumatology Research Foundation.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Citrulinação , Biblioteca de Peptídeos , Epitopos/química , Epitopos/imunologia , Humanos , Proteoma/química , Proteoma/imunologia
6.
Mil Med ; 185(3-4): e414-e421, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32077949

RESUMO

INTRODUCTION: Recent malicious use of chemical warfare agents (CWAs) is a reminder of their severity and ongoing threat. One of the main categories of CWAs is the organophosphate (OP) nerve agents. Presently, there is an urgent need to identify and evaluate OP nerve agent biomarkers that can facilitate identification of exposed individuals post-CWA incident. While exposures to OP nerve agents may be scenario-specific, the public is commonly exposed to OP compounds through the ubiquitous use of OP pesticides, which are chemically related to nerve agents. Therefore, a systematic literature review and methodological quality assessment were conducted for OP pesticide biomarker studies to serve as a baseline to assess if these approaches may be adapted to OP nerve agent exposures. MATERIALS AND METHODS: We conducted a systematic literature review to identify biomarkers of OP pesticide exposures. English language studies of any design that reported primary data on biomarkers for exposures in nonhuman primates or adult human study participants were eligible for inclusion. Using standard criteria for assessing the completeness of reported analytical methods, the quality of study methods was critically evaluated. RESULTS: A total of 1,044 studies of biomarkers of OP pesticide exposure were identified, of which 75 articles satisfied the inclusion and exclusion criteria. These studies described 143 different analyte/sample matrix combinations: 99 host-based biomarkers, 28 metabolites, 12 pesticides, and 4 adducts. The most commonly reported biomarkers were dialkyl phosphate urinary metabolites (22 studies), blood acetylcholinesterase, and plasma butyrylcholinesterase (26 studies each). None of the assessed quality review criteria were fully addressed by all identified studies, with almost all criteria scoring less than 50%. CONCLUSION: Cholinesterase activity may have utility for identifying individuals with exposures surpassing a given threshold of OP nerve agent, but further investigation of how acetylcholinesterase and butyrylcholinesterase levels correlate with observed patient symptoms may be required to ensure accuracy of results. As CWAs and nerve agents are more readily used, more standardized reporting of biomarker measurements are needed to develop new approaches for OP nerve agent biomarkers.


Assuntos
Biomarcadores/análise , Agentes Neurotóxicos , Organofosfatos , Compostos Organofosforados , Praguicidas
7.
Nucleic Acids Res ; 30(19): 4314-20, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12364611

RESUMO

Thermotoga neapolitana (Tne) DNA polymerase belongs to the DNA polymerase I (Pol I) family. The O-helix region of these polymerases is involved in dNTP binding and also plays a role in binding primer-template during DNA synthesis. Here we report that mutations in the O-helix region of Tne DNA polymerase (Arg722 to His, Tyr or Lys) almost completely abolished the enzyme's ability to catalyze the template-independent addition of a single base at the 3'-end of newly synthesized DNA in vitro. The mutations did not significantly affect the DNA polymerase catalytic activity and reduced base misinsertions 5- to 50-fold. The same Arg722 mutations dramatically increased the ability of the enzyme's 3'-->5' exonuclease to remove mispaired 3' bases in a primer extension assay. These mutant DNA polymerases can be used to accurately amplify target DNA in vitro for gene cloning and genotyping analysis.


Assuntos
DNA Polimerase I/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Sequência de Aminoácidos , Catálise , DNA Polimerase I/genética , Mutação , Mutação de Sentido Incorreto , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
Mob DNA ; 3(1): 1, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22277150

RESUMO

BACKGROUND: Transposition in IS3, IS30, IS21 and IS256 insertion sequence (IS) families utilizes an unconventional two-step pathway. A figure-of-eight intermediate in Step I, from asymmetric single-strand cleavage and joining reactions, is converted into a double-stranded minicircle whose junction (the abutted left and right ends) is the substrate for symmetrical transesterification attacks on target DNA in Step II, suggesting intrinsically different synaptic complexes (SC) for each step. Transposases of these ISs bind poorly to cognate DNA and comparative biophysical analyses of SC I and SC II have proven elusive. We have prepared a native, soluble, active, GFP-tagged fusion derivative of the IS2 transposase that creates fully formed complexes with single-end and minicircle junction (MCJ) substrates and used these successfully in hydroxyl radical footprinting experiments. RESULTS: In IS2, Step I reactions are physically and chemically asymmetric; the left imperfect, inverted repeat (IRL), the exclusive recipient end, lacks donor function. In SC I, different protection patterns of the cleavage domains (CDs) of the right imperfect inverted repeat (IRR; extensive in cis) and IRL (selective in trans) at the single active cognate IRR catalytic center (CC) are related to their donor and recipient functions. In SC II, extensive binding of the IRL CD in trans and of the abutted IRR CD in cis at this CC represents the first phase of the complex. An MCJ substrate precleaved at the 3' end of IRR revealed a temporary transition state with the IRL CD disengaged from the protein. We propose that in SC II, sequential 3' cleavages at the bound abutted CDs trigger a conformational change, allowing the IRL CD to complex to its cognate CC, producing the second phase. Corroborating data from enhanced residues and curvature propensity plots suggest that CD to CD interactions in SC I and SC II require IRL to assume a bent structure, to facilitate binding in trans. CONCLUSIONS: Different transpososomes are assembled in each step of the IS2 transposition pathway. Recipient versus donor end functions of the IRL CD in SC I and SC II and the conformational change in SC II that produces the phase needed for symmetrical IRL and IRR donor attacks on target DNA highlight the differences.

9.
Mob DNA ; 2: 14, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-22032517

RESUMO

BACKGROUND: The two-step transposition pathway of insertion sequences of the IS3 family, and several other families, involves first the formation of a branched figure-of-eight (F-8) structure by an asymmetric single strand cleavage at one optional donor end and joining to the flanking host DNA near the target end. Its conversion to a double stranded minicircle precedes the second insertional step, where both ends function as donors. In IS2, the left end which lacks donor function in Step I acquires it in Step II. The assembly of two intrinsically different protein-DNA complexes in these F-8 generating elements has been intuitively proposed, but a barrier to testing this hypothesis has been the difficulty of isolating a full length, soluble and active transposase that creates fully formed synaptic complexes in vitro with protein bound to both binding and catalytic domains of the ends. We address here a solution to expressing, purifying and structurally analyzing such a protein. RESULTS: A soluble and active IS2 transposase derivative with GFP fused to its C-terminus functions as efficiently as the native protein in in vivo transposition assays. In vitro electrophoretic mobility shift assay data show that the partially purified protein prepared under native conditions binds very efficiently to cognate DNA, utilizing both N- and C-terminal residues. As a precursor to biophysical analyses of these complexes, a fluorescence-based random mutagenesis protocol was developed that enabled a structure-function analysis of the protein with good resolution at the secondary structure level. The results extend previous structure-function work on IS3 family transposases, identifying the binding domain as a three helix H + HTH bundle and explaining the function of an atypical leucine zipper-like motif in IS2. In addition gain- and loss-of-function mutations in the catalytic active site define its role in regional and global binding and identify functional signatures that are common to the three dimensional catalytic core motif of the retroviral integrase superfamily. CONCLUSIONS: Intractably insoluble transposases, such as the IS2 transposase, prepared by solubilization protocols are often refractory to whole protein structure-function studies. The results described here have validated the use of GFP-tagging and fluorescence-based random mutagenesis in overcoming this limitation at the secondary structure level.

10.
Extremophiles ; 8(3): 243-51, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15197605

RESUMO

Conserved motifs found in known bacterial polI DNA polymerase sequences were identified, and degenerate PCR primers were designed for PCR amplification of an internal portion of polI genes from all bacterial divisions. We describe here a method that has allowed the rapid identification and isolation of 13 polI genes from a diverse selection of thermophilic bacteria and report on the biochemical characteristics of nine of the purified recombinant enzymes. Several enzymes showed significant reverse-transcriptase activity in the presence of Mg2+, particularly the polymerases from Bacillus caldolyticus EA1, Caldibacillus cellovorans CompA.2, and Clostridium stercorarium.


Assuntos
Bactérias/enzimologia , DNA Polimerase I/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Bacillus/enzimologia , Bacillus/genética , Bactérias/genética , Sequência de Bases , Clonagem Molecular , Clostridium/enzimologia , Clostridium/genética , DNA Polimerase I/genética , Primers do DNA/genética , DNA Bacteriano/genética , Estabilidade Enzimática , Genes Bacterianos , Temperatura Alta , Cinética , Magnésio/farmacologia , Dados de Sequência Molecular , DNA Polimerase Dirigida por RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA