Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 67(11): 2555-2567, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39138690

RESUMO

AIMS/HYPOTHESIS: The temporal suppression of insulin clearance after glucose ingestion is a key determinant of glucose tolerance for people without type 2 diabetes. Whether similar adaptations are observed after the ingestion of a mixed-macronutrient meal is unclear. METHODS: In a secondary analysis of data derived from two randomised, controlled trials, we studied the temporal responses of insulin clearance after the ingestion of a standardised breakfast meal consisting of cereal and milk in lean normoglycaemic individuals (n=12; Lean-NGT), normoglycaemic individuals with central obesity (n=11; Obese-NGT) and in people with type 2 diabetes (n=19). Pre-hepatic insulin secretion rates were determined by the deconvolution of C-peptide, and insulin clearance was calculated using a single-pool model. Insulin sensitivity was measured by an oral minimal model. RESULTS: There were divergent time course changes in insulin clearance between groups. In the Lean-NGT group, there was an immediate post-meal increase in insulin clearance compared with pre-meal values (p<0.05), whereas insulin clearance remained stable at baseline values in Obese-NGT or declined slightly in the type 2 diabetes group (p<0.05). The mean AUC for insulin clearance during the test was ~40% lower in the Obese-NGT (1.3 ± 0.4 l min-1 m-2) and type 2 diabetes (1.4 ± 0.7 l min-1 m-2) groups compared with Lean-NGT (1.9 ± 0.5 l min-1 m-2; p<0.01), with no difference between the Obese-NGT and type 2 diabetes groups. HOMA-IR and glucagon AUC emerged as predictors of insulin clearance AUC, independent of BMI, age or insulin sensitivity (adjusted R2=0.670). Individuals with increased glucagon AUC had a 40% reduction in insulin clearance AUC (~ -0.75 l min-1 m-2; p<0.001). CONCLUSIONS/INTERPRETATION: The ingestion of a mixed-macronutrient meal augments differing temporal profiles in insulin clearance among individuals without type 2 diabetes, which is associated with HOMA-IR and the secretion of glucagon. Further research investigating the role of hepatic glucagon signalling in postprandial insulin kinetics is warranted. TRIAL REGISTRATION: ISRCTN17563146 and ISRCTN95281775.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Glucagon , Insulina , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Glucagon/sangue , Glucagon/metabolismo , Insulina/sangue , Insulina/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Glicemia/metabolismo , Resistência à Insulina/fisiologia , Período Pós-Prandial/fisiologia , Obesidade/metabolismo , Obesidade/sangue , Nutrientes/metabolismo , Refeições
2.
Diabetologia ; 66(2): 321-335, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36221008

RESUMO

AIMS/HYPOTHESIS: Excess adiposity is differentially associated with increased risk of cardiometabolic disease in men and women, according to observational studies. Causal inference studies largely assume a linear relationship between BMI and cardiometabolic outcomes, which may not be the case. In this study, we investigated the shapes of the causal relationships between BMI and cardiometabolic diseases and risk factors. We further investigated sex differences within the causal framework. METHODS: To assess causal relationships between BMI and the outcomes, we used two-stage least-squares Mendelian randomisation (MR), with a polygenic risk score for BMI as the instrumental variable. To elucidate the shapes of the causal relationships, we used a non-linear MR fractional polynomial method, and used piecewise MR to investigate threshold relationships and confirm the shapes. RESULTS: BMI was associated with type 2 diabetes (OR 3.10; 95% CI 2.73, 3.53), hypertension (OR 1.53; 95% CI 1.44, 1.62) and coronary artery disease (OR 1.20; 95% CI 1.08, 1.33), but not chronic kidney disease (OR 1.08; 95% CI 0.67, 1.72) or stroke (OR 1.08; 95% CI 0.92, 1.28). The data suggest that these relationships are non-linear. For cardiometabolic risk factors, BMI was positively associated with glucose, HbA1c, triacylglycerol levels and both systolic and diastolic BP. BMI had an inverse causal relationship with total cholesterol, LDL-cholesterol and HDL-cholesterol. The data suggest a non-linear causal relationship between BMI and BP and other biomarkers (p<0.001) except lipoprotein A. The piecewise MR results were consistent with the fractional polynomial results. The causal effect of BMI on coronary artery disease, total cholesterol and LDL-cholesterol was different in men and women, but this sex difference was only significant for LDL-cholesterol after controlling for multiple testing (p<0.001). Further, the causal effect of BMI on coronary artery disease varied by menopause status in women. CONCLUSIONS/INTERPRETATION: We describe the shapes of causal effects of BMI on cardiometabolic diseases and risk factors, and report sex differences in the causal effects of BMI on LDL-cholesterol. We found evidence of non-linearity in the causal effect of BMI on diseases and risk factor biomarkers. Reducing excess adiposity is highly beneficial for health, but there is greater need to consider biological sex in the management of adiposity.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Masculino , Adiposidade , Índice de Massa Corporal , Fatores de Risco , Obesidade , LDL-Colesterol/metabolismo , Biomarcadores , Análise da Randomização Mendeliana
4.
Diabetologia ; 63(5): 1043-1054, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31974732

RESUMO

AIMS/HYPOTHESIS: Evidence that glucose-dependent insulinotropic peptide (GIP) and/or the GIP receptor (GIPR) are involved in cardiovascular biology is emerging. We hypothesised that GIP has untoward effects on cardiovascular biology, in contrast to glucagon-like peptide 1 (GLP-1), and therefore investigated the effects of GIP and GLP-1 concentrations on cardiovascular disease (CVD) and mortality risk. METHODS: GIP concentrations were successfully measured during OGTTs in two independent populations (Malmö Diet Cancer-Cardiovascular Cohort [MDC-CC] and Prevalence, Prediction and Prevention of Diabetes in Botnia [PPP-Botnia]) in a total of 8044 subjects. GLP-1 (n = 3625) was measured in MDC-CC. The incidence of CVD and mortality was assessed via national/regional registers or questionnaires. Further, a two-sample Mendelian randomisation (2SMR) analysis between the GIP pathway and outcomes (coronary artery disease [CAD] and myocardial infarction) was carried out using a GIP-associated genetic variant, rs1800437, as instrumental variable. An additional reverse 2SMR was performed with CAD as exposure variable and GIP as outcome variable, with the instrumental variables constructed from 114 known genetic risk variants for CAD. RESULTS: In meta-analyses, higher fasting levels of GIP were associated with risk of higher total mortality (HR[95% CI] = 1.22 [1.11, 1.35]; p = 4.5 × 10-5) and death from CVD (HR[95% CI] 1.30 [1.11, 1.52]; p = 0.001). In accordance, 2SMR analysis revealed that increasing GIP concentrations were associated with CAD and myocardial infarction, and an additional reverse 2SMR revealed no significant effect of CAD on GIP levels, thus confirming a possible effect solely of GIP on CAD. CONCLUSIONS/INTERPRETATION: In two prospective, community-based studies, elevated levels of GIP were associated with greater risk of all-cause and cardiovascular mortality within 5-9 years of follow-up, whereas GLP-1 levels were not associated with excess risk. Further studies are warranted to determine the cardiovascular effects of GIP per se.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/mortalidade , Polipeptídeo Inibidor Gástrico/metabolismo , Glucose/metabolismo , Adulto , Idoso , Feminino , Genótipo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Receptores dos Hormônios Gastrointestinais/metabolismo
5.
Diabetologia ; 63(4): 744-756, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32002573

RESUMO

AIMS/HYPOTHESIS: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). METHODS: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. RESULTS: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. CONCLUSIONS/INTERPRETATION: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Homeostase/fisiologia , Idoso , Glicemia/metabolismo , Estudos de Coortes , Estudos Transversais , Dinamarca/epidemiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/terapia , Feminino , Finlândia/epidemiologia , Teste de Tolerância a Glucose , Controle Glicêmico , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Suécia/epidemiologia
6.
PLoS Med ; 17(6): e1003149, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559194

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915.


Assuntos
Fígado Gorduroso/etiologia , Aprendizado de Máquina , Complicações do Diabetes/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Estudos Prospectivos , Reprodutibilidade dos Testes , Medição de Risco
8.
J Hepatol ; 71(3): 594-602, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226389

RESUMO

BACKGROUND & AIMS: Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. METHODS: First, we performed a genome-wide association study (GWAS) in 8,289 individuals from UK Biobank, whose liver iron level had been quantified by magnetic resonance imaging, before validating our findings in an independent cohort (n = 1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 25 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 traits and disease outcomes. RESULTS: We identified 3 independent genetic variants (rs1800562 [C282Y] and rs1799945 [H63D] in HFE and rs855791 [V736A] in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p <5 × 10-8). The 2 HFE variants account for ∼85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. CONCLUSION: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases. LAY SUMMARY: Excess liver iron content is common and is associated with liver diseases and metabolic diseases including diabetes, high blood pressure, and heart disease. We identified 3 genetic variants that are linked to an increased risk of developing higher liver iron content. We show that the same genetic variants are linked to higher risk of many diseases, but they may also be associated with some health advantages. Finally, we use genetic variants associated with waist-to-hip ratio as a tool to show that central obesity is causally associated with increased liver iron content.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Proteína da Hemocromatose/genética , Hemocromatose/genética , Hepcidinas/genética , Ferro/sangue , Fígado/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Reino Unido
9.
Biochem Pharmacol ; 223: 116171, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38552854

RESUMO

Upper-body adiposity is adversely associated with metabolic health whereas the opposite is observed for the lower-body. The neck is a unique upper-body fat depot in adult humans, housing thermogenic brown adipose tissue (BAT), which is increasingly recognised to influence whole-body metabolic health. Loss of BAT, concurrent with replacement by white adipose tissue (WAT), may contribute to metabolic disease, and specific accumulation of neck fat is seen in certain conditions accompanied by adverse metabolic consequences. Yet, few studies have investigated the relationships between neck fat mass (NFM) and cardiometabolic risk, and the influence of sex and metabolic status. Typically, neck circumference (NC) is used as a proxy for neck fat, without considering other determinants of NC, including variability in neck lean mass. In this study we develop and validate novel methods to quantify NFM using dual x-ray absorptiometry (DEXA) imaging, and subsequently investigate the associations of NFM with metabolic biomarkers across approximately 7000 subjects from the Oxford BioBank. NFM correlated with systemic insulin resistance (Homeostatic Model Assessment for Insulin Resistance; HOMA-IR), low-grade inflammation (plasma high-sensitivity C-Reactive Protein; hsCRP), and metabolic markers of adipose tissue function (plasma triglycerides and non-esterified fatty acids; NEFA). NFM was higher in men than women, higher in type 2 diabetes mellitus compared with non-diabetes, after adjustment for total body fat, and also associated with overall cardiovascular disease risk (calculated QRISK3 score). This study describes the development of methods for accurate determination of NFM at scale and suggests a specific relationship between NFM and adverse metabolic health.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adulto , Masculino , Humanos , Feminino , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Fatores de Risco , Tecido Adiposo , Obesidade/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo
10.
Nat Metab ; 5(2): 237-247, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36703017

RESUMO

Obesity and type 2 diabetes are causally related, yet there is considerable heterogeneity in the consequences of both conditions and the mechanisms of action are poorly defined. Here we show a genetic-driven approach defining two obesity profiles that convey highly concordant and discordant diabetogenic effects. We annotate and then compare association signals for these profiles across clinical and molecular phenotypic layers. Key differences are identified in a wide range of traits, including cardiovascular mortality, fat distribution, liver metabolism, blood pressure, specific lipid fractions and blood levels of proteins involved in extracellular matrix remodelling. We find marginal differences in abundance of Bacteroidetes and Firmicutes bacteria in the gut. Instrumental analyses reveal prominent causal roles for waist-to-hip ratio, blood pressure and cholesterol content of high-density lipoprotein particles in the development of diabetes in obesity. We prioritize 17 genes from the discordant signature that convey protection against type 2 diabetes in obesity, which may represent logical targets for precision medicine approaches.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Obesidade/genética , Obesidade/metabolismo , Fenótipo , Colesterol
11.
Nutrients ; 14(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35334875

RESUMO

Assessing the causal effects of individual dietary macronutrients and cardiometabolic disease is challenging because distinguish direct effects from those mediated or confounded by other factors is difficult. To estimate these effects, intake of protein, carbohydrate, sugar, fat, and its subtypes were obtained using food frequency data derived from a Swedish population-based cohort (n~60,000). Data on clinical outcomes (i.e., type 2 diabetes (T2D) and cardiovascular disease (CVD) incidence) were obtained by linking health registry data. We assessed the magnitude of direct and mediated effects of diet, adiposity and physical activity on T2D and CVD using structural equation modelling (SEM). To strengthen causal inference, we used Mendelian randomization (MR) to model macronutrient intake exposures against clinical outcomes. We identified likely causal effects of genetically predicted carbohydrate intake (including sugar intake) and T2D, independent of adiposity and physical activity. Pairwise, serial- and parallel-mediational configurations yielded similar results. In the integrative genomic analyses, the candidate causal variant localized to the established T2D gene TCF7L2. These findings may be informative when considering which dietary modifications included in nutritional guidelines are most likely to elicit health-promoting effects.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Adiposidade , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Dieta , Exercício Físico , Humanos , Nutrientes
12.
Diabetes Care ; 44(1): 224-230, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208488

RESUMO

OBJECTIVE: While existing evidence supports beneficial cardiovascular effects of glucagon-like peptide 1 (GLP-1), emerging studies suggest that glucose-dependent insulinotropic peptide (GIP) and/or signaling via the GIP receptor may have untoward cardiovascular effects. Indeed, recent studies show that fasting physiological GIP levels are associated with total mortality and cardiovascular mortality, and it was suggested that GIP plays a role in pathogenesis of coronary artery disease. We investigated the associations between fasting and postchallenge GIP and GLP-1 concentrations and subclinical atherosclerosis as measured by mean intima-media thickness in the common carotid artery (IMTmeanCCA) and maximal intima-media thickness in the carotid bifurcation (IMTmaxBulb). RESEARCH DESIGN AND METHODS: Participants at reexamination within the Malmö Diet and Cancer-Cardiovascular Cohort study (n = 3,734, mean age 72.5 years, 59.3% women, 10.8% subjects with diabetes, fasting GIP available for 3,342 subjects, fasting GLP-1 available for 3,299 subjects) underwent oral glucose tolerance testing and carotid ultrasound. RESULTS: In linear regression analyses, each 1-SD increment of fasting GIP was associated with increased (per mm) IMTmeanCCA (ß = 0.010, P = 0.010) and IMTmaxBulb (ß = 0.014; P = 0.040) in models adjusted for known risk factors and glucose metabolism. In contrast, each 1-SD increment of fasting GLP-1 was associated with decreased IMTmaxBulb (per mm, ß = -0.016, P = 0.014). These associations remained significant when subjects with diabetes were excluded from analyses. CONCLUSIONS: In a Swedish elderly population, physiologically elevated levels of fasting GIP are associated with increased IMTmeanCCA, while GLP-1 is associated with decreased IMTmaxBulb, further emphasizing diverging cardiovascular effects of these two incretin hormones.


Assuntos
Espessura Intima-Media Carotídea , Polipeptídeo Inibidor Gástrico , Idoso , Glicemia , Estudos de Coortes , Feminino , Humanos , Masculino , Valores de Referência
13.
J Am Heart Assoc ; 9(16): e014513, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32805198

RESUMO

Background Genome-wide association studies have identified >1000 genetic variants cross-sectionally associated with blood pressure variation and prevalent hypertension. These discoveries might aid the early identification of subpopulations at risk of developing hypertension or provide targets for drug development, amongst other applications. The aim of the present study was to analyze the association of blood pressure-associated variants with long-term changes (10 years) in blood pressure and also to assess their ability to predict hypertension incidence compared with traditional risk variables in a Swedish population. Methods and Results We constructed 6 genetic risk scores (GRSs) by summing the dosage of the effect allele at each locus of genetic variants previously associated with blood pressure traits (systolic blood pressure GRS (GRSSBP): 554 variants; diastolic blood pressure GRS (GRSDBP): 481 variants; mean arterial pressure GRS (GRSMAP): 20 variants; pulse pressure GRS (GRSPP): 478 variants; hypertension GRS (GRSHTN): 22 variants; combined GRS (GRScomb): 1152 variants). Each GRS was longitudinally associated with its corresponding blood pressure trait, with estimated effects per GRS SD unit of 0.50 to 1.21 mm Hg for quantitative traits and odds ratios (ORs) of 1.10 to 1.35 for hypertension incidence traits. The GRScomb was also significantly associated with hypertension incidence defined according to European guidelines (OR, 1.22 per SD; 95% CI, 1.10‒1.35) but not US guidelines (OR, 1.11 per SD; 95% CI, 0.99‒1.25) while controlling for traditional risk factors. The addition of GRScomb to a model containing traditional risk factors only marginally improved discrimination (Δarea under the ROC curve = 0.001-0.002). Conclusions GRSs based on discovered blood pressure-associated variants are associated with long-term changes in blood pressure traits and hypertension incidence, but the inclusion of genetic factors in a model composed of conventional hypertension risk factors did not yield a material increase in predictive ability.


Assuntos
Pressão Sanguínea/genética , Loci Gênicos , Variação Genética , Hipertensão/genética , Pressão Sanguínea/fisiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Guias como Assunto , Humanos , Hipertensão/epidemiologia , Incidência , Masculino , Pessoa de Meia-Idade , Razão de Chances , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC , Fatores de Risco , Suécia , Fatores de Tempo
14.
Nat Commun ; 11(1): 4592, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929089

RESUMO

Prediabetes is a state of glycaemic dysregulation below the diagnostic threshold of type 2 diabetes (T2D). Globally, ~352 million people have prediabetes, of which 35-50% develop full-blown diabetes within five years. T2D and its complications are costly to treat, causing considerable morbidity and early mortality. Whether prediabetes is causally related to diabetes complications is unclear. Here we report a causal inference analysis investigating the effects of prediabetes in coronary artery disease, stroke and chronic kidney disease, complemented by a systematic review of relevant observational studies. Although the observational studies suggest that prediabetes is broadly associated with diabetes complications, the causal inference analysis revealed that prediabetes is only causally related with coronary artery disease, with no evidence of causal effects on other diabetes complications. In conclusion, prediabetes likely causes coronary artery disease and its prevention is likely to be most effective if initiated prior to the onset of diabetes.


Assuntos
Doenças Cardiovasculares/complicações , Estado Pré-Diabético/complicações , Glicemia/metabolismo , Doenças Cardiovasculares/genética , Intervalos de Confiança , Doença da Artéria Coronariana/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Jejum/sangue , Humanos , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Razão de Chances , Estado Pré-Diabético/sangue , Estado Pré-Diabético/genética , Insuficiência Renal Crônica/complicações , Fatores de Risco , Acidente Vascular Cerebral/complicações
15.
Diabetes ; 68(1): 207-219, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352878

RESUMO

Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such favorable adiposity alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined MRI data with genome-wide association studies of body fat percentage (%) and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity but a favorable metabolic profile. Consistent with previous studies, individuals carrying more favorable adiposity alleles had higher body fat % and higher BMI but lower risk of type 2 diabetes, heart disease, and hypertension. These individuals also had higher subcutaneous fat but lower liver fat and a lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14, and IRS1, whereas the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified favorable adiposity alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglycerides in metabolically low-risk depots.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/genética , Cardiopatias/diagnóstico por imagem , Cardiopatias/genética , Imageamento por Ressonância Magnética/métodos , Adiposidade/genética , Adiposidade/fisiologia , Adulto , Idoso , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Estudo de Associação Genômica Ampla , Cardiopatias/fisiopatologia , Humanos , Hipertensão/diagnóstico por imagem , Hipertensão/genética , Hipertensão/fisiopatologia , Gordura Intra-Abdominal/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico por imagem , Obesidade/genética , Obesidade/fisiopatologia , Relação Cintura-Quadril
16.
Sci Rep ; 6: 37307, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886175

RESUMO

Randomized controlled trials (RCT) are often underpowered for validating gene-treatment interactions. Using published data from the Diabetes Prevention Program (DPP), we examined power in conventional and genotype-based recall (GBR) trials. We calculated sample size and statistical power for gene-metformin interactions (vs. placebo) using incidence rates, gene-drug interaction effect estimates and allele frequencies reported in the DPP for the rs8065082 SLC47A1 variant, a metformin transported encoding locus. We then calculated statistical power for interactions between genetic risk scores (GRS), metformin treatment and intensive lifestyle intervention (ILI) given a range of sampling frames, clinical trial sample sizes, interaction effect estimates, and allele frequencies; outcomes were type 2 diabetes incidence (time-to-event) and change in small LDL particles (continuous outcome). Thereafter, we compared two recruitment frameworks: GBR (participants recruited from the extremes of a GRS distribution) and conventional sampling (participants recruited without explicit emphasis on genetic characteristics). We further examined the influence of outcome measurement error on statistical power. Under most simulated scenarios, GBR trials have substantially higher power to observe gene-drug and gene-lifestyle interactions than same-sized conventional RCTs. GBR trials are becoming popular for validation of gene-treatment interactions; our analyses illustrate the strengths and weaknesses of this design.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/prevenção & controle , Metformina/uso terapêutico , Proteínas de Transporte de Cátions Orgânicos/genética , Exercício Físico , Frequência do Gene , Genótipo , Humanos , Hipoglicemiantes/uso terapêutico , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único , Ensaios Clínicos Controlados Aleatórios como Assunto , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA