Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(3): ar36, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170579

RESUMO

Transporting epithelial cells of the gut and kidney interact with their luminal environment through a densely packed collection of apical microvilli known as a brush border (BB). Proper brush border assembly depends on the intermicrovillar adhesion complex (IMAC), a protocadherin-based adhesion complex found at the distal tips of microvilli that mediates adhesion between neighboring protrusions to promote their organized packing. Loss of the IMAC adhesion molecule Cadherin-related family member 5 (CDHR5) results in significant brush border defects, though the functional properties of this protocadherin have not been thoroughly explored. Here, we show that the cytoplasmic tail of CDHR5 contributes to its correct apical targeting and functional properties in an isoform-specific manner. Library screening identified the Ezrin-associated scaffolds EBP50 and E3KARP as cytoplasmic binding partners for CDHR5. Consistent with this, loss of EBP50 disrupted proper brush border assembly with cells exhibiting markedly reduced apical IMAC levels. Together, our results shed light on the apical targeting determinants of CDHR5 and further define the interactome of the IMAC involved in brush border assembly.


Assuntos
Células Epiteliais , Protocaderinas , Microvilosidades/metabolismo , Células Epiteliais/metabolismo
2.
bioRxiv ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39345484

RESUMO

Myosin-7A (Myo7A) is a motor protein crucial for the organization and function of stereocilia, specialized actin-rich protrusions on the surface of inner ear hair cells that mediate hearing. Mutations in Myo7A cause several forms of genetic hearing loss, including autosomal dominant DFNA11 deafness. Despite its importance, the structural elements of Myo7A that control its motor activity within cells are not well understood. In this study, we used cultured kidney epithelial cells to screen for mutations that activate the motor-dependent targeting of Myo7A to the tips of apical microvilli on these cells. Our findings reveal that Myo7A is regulated by specific IQ motifs within its lever arm, and that this regulation can function at least partially independent of its tail sequence. Importantly, we demonstrate that many of the DFNA11 deafness mutations reported in patients activate Myo7A targeting, providing a potential explanation for the autosomal dominant genetics of this form of deafness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA