Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Med Vet Entomol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138767

RESUMO

Stomoxys calcitrans L. (Diptera: Muscidae), the stable fly, is a hematophagous insect of great veterinary importance, because it is a mechanical vector of diverse pathogens in livestock. The saliva of blood-feeding insects presents important pharmacologically active molecules that impair blood clotting, promote vasodilation and modulate the host immune system response, crucial processes for successful feeding. These properties also enable pathogens' transmission. In the present work, we describe an efficient protocol to dissect S. calcitrans salivary glands, their morphological characteristics and lipid profile. The mean length of the tubular gland is 3.23 mm with a bulbous posterior end and a narrow anterior end. Histological analysis revealed a monolayer of large polygonal epithelial cells with voluminous nuclei and high lipid content in their cytoplasm. Ultrastructural analysis showed that the epithelium is rich in mitochondria, free ribosomes, Golgi complex cisternae, presenting a great extension of rough endoplasmic reticulum that contains an electron-dense material. Lipid analysis by thin-layer chromatography showed that neutral fatty acids and phosphatidylcholine are predominant in the fly salivary glands. Lysophosphatidylcholine, an important signalling biomolecule involved in different metabolic processes, including host's immunomodulation and pathogens proliferation and differentiation, is also present.


Stomoxys calcitrans L. (Diptera: Muscidae), a mosca­dos­estábulos, é um inseto hematófago de grande importância veterinária, uma vez que é vetor mecânico de diversos patógenos que infectam animais da pecuária. A saliva de insetos que se alimentam de sangue apresenta importantes moléculas farmacologicamente ativas que impedem coagulação sanguínea, promovem vasodilatação e modulam o sistema imune do hospedeiro, processos cruciais para uma alimentação bem sucedida. Tais propriedades também permitem a transmissão de patógenos. No presente trabalho, nós descrevemos um protocolo eficiente para dissecar as glândulas salivares de S. calcitrans, suas características morfológicas e perfil lipídico. O comprimento médio da glândula tubular é 3.23 mm com uma porção posterior bulbosa e porção anterior estreita. Análises histológicas revelaram uma monocamada de células epiteliais largas e poligonais com núcleos volumosos e alto conteúdo lipídico em seus citoplasmas. Análises ultraestruturais mostraram um epitélio rico em mitocôndria, ribossomos livres, cisternas do complexo de Golgi, apresentando uma grande extensão de retículo endoplasmático que contém um material eletrodenso. A análise lipídica mostrou que ácidos graxos neutros e fosfatidilcolina predominam nas glândulas salivares da mosca. Lisofosfatidilcolina, uma importante biomolécula sinalizadora envolvida em diferentes processos metabólicos, incluindo imunomodulação do hospedeiro e proliferação e diferenciação de patógenos, também se encontra presente.

2.
Parasitol Res ; 123(1): 80, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163833

RESUMO

Chagas disease, endemic from Latin America, is caused by Trypanosoma cruzi and is transmitted by triatomine feces. This parasite undergoes complex morphological changes through its life cycle, promoted by significant changes in signal transduction pathways. The activity of protein kinase CK2 has been described in trypanosomatids. Using a specific peptide and radioactive ATP, we identified CK2 activity on the cellular surface and the cytoplasmic content in Trypanosoma cruzi, apart from the secreted form. Dephosphorylated casein promoted an increase of 48% in the secreted CK2 activity. Total extract of peritoneal macrophages from BALB/c and inactivated human serum promoted an increase of 67% and 36%, respectively, in this activity. The protein secreted by parasites was purified by HPLC and had shown compatibility with the catalytic subunit of mammalian CK2. Incubation of the parasites with CK2 inhibitors, added to the culture medium, prevented their growth. The opposite was observed when CK2 activators were used. Results of interaction between Trypanosoma cruzi and the gut of the vector have revealed that, in the presence of CK2 inhibitors, there is a reduction in the association rate. A similar inhibition profile was seen in the Trypanosoma cruzi-macrophages interaction, confirming the importance of this enzyme in the life cycle of this protozoan.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/metabolismo , Caseína Quinase II/metabolismo , Doença de Chagas/parasitologia , Invertebrados , Mamíferos
3.
J Neurochem ; 164(2): 158-171, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349509

RESUMO

Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14 C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial-Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy.


Assuntos
Hanseníase , Mycobacterium leprae , Humanos , Animais , Camundongos , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicolipídeos/metabolismo , Vacina BCG/metabolismo , Hanseníase/microbiologia , Células de Schwann/metabolismo
4.
Wound Repair Regen ; 31(3): 338-348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36975171

RESUMO

Extra virgin olive oil (EVOO) has proved beneficial effects in skin wound healing of chronic lesions; however, the effects of EVOO in acute wounds are not completely understood. This study investigated the effects of short-term and long-term administration of a diet rich in EVOO on acute wound healing. To check this, mice were fed with a diet rich in EVOO for 1 week (short term), 1 month, or 3 months (long term). The control group received a standard diet. Mouse macrophages were treated in vitro with EVOO or hydroxytyrosol (HT), which is the main EVOO polyphenol. Short-term administration of an EVOO rich diet in vivo increased lipid peroxidation and mRNA levels of pro-inflammatory cytokine levels and impaired acute wound closure. In contrast, long-term administration of an EVOO rich diet resulted in increased mRNA levels of anti-inflammatory cytokines and enhanced acute wound closure. In both in vivo and in vitro assays, the administration of EVOO or HT resulted in a predominantly anti-inflammatory macrophage phenotype. In conclusion, a diet rich in EVOO has a positive effect on acute wound healing that is dependent on the duration of EVOO administration. Short-term EVOO diet supplementation increases oxidative damage and pro-inflammatory responses, which impaired acute wound closure. On the other hand, long-term EVOO supplementation reduces oxidative damage and enhances anti-inflammatory responses, which improved acute wound closure. The effects of EVOO on oxidation and inflammation in acute wounds are linked to the EVOO polyphenol HT.


Assuntos
Estresse Oxidativo , Cicatrização , Camundongos , Animais , Azeite de Oliva/farmacologia , Inflamação , Citocinas/metabolismo , Polifenóis/farmacologia
5.
Mem Inst Oswaldo Cruz ; 117: e220407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35384972

RESUMO

A significant percentage of exogenous cholesterol was found in promastigotes and amastigotes of all studied species of Leishmania, suggesting a biological role for this molecule. Previous studies have shown that promastigotes of Leishmania uptake more low-density lipoprotein (LDL) particles under pharmacological pressure and are more susceptible to ergosterol inhibition in the absence of exogenous sources of cholesterol. This work shows that the host's LDL is available to intracellular amastigotes and that the absence of exogenous cholesterol enhances the potency of sterol biosynthesis inhibitors in infected macrophages. A complete understanding of cholesterol transport to the parasitophorous vacuole can guide the development of a new drug class to be used in combination with sterol biosynthesis inhibitors for the treatment of leishmaniases.


Assuntos
Leishmania mexicana , Leishmania , Leishmaniose , Animais , Colesterol , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C
6.
J Membr Biol ; 254(5-6): 499-512, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34716469

RESUMO

We have previously shown that 21-benzylidene digoxin (21-BD) increases the total cholesterol and phospholipid content on the membrane of HeLa cells. Lipid modulation caused by cardiotonic steroids (CTS) is still unexplored. Therefore, the aim of the present study was to evaluate the cholesterol and phospholipid modulation of the cell membrane caused by ouabain and 21-BD and the possible involvement of the caveolae on this modulation. For this, one cell line containing caveolae (HeLa) and other not containing (Caco-2) were used. The modulation of the lipid profile was evaluated by total cholesterol and phospholipids measurements, and identification of membrane phospholipids by HPTLC. The cholesterol distribution was evaluated by filipin staining. The caveolin-1 expression was evaluated by Western Blotting. Ouabain had no effect on the total membrane lipid content in both cell lines. However, 21-BD increased total membrane phospholipid content and had no effect on the membrane cholesterol content in Caco-2 cells. CTS were not able to alter the specific phospholipids content. In the filipin experiments, 21-BD provoked a remarkable redistribution of cholesterol to the perinuclear region of HeLa cells. In Caco-2 cells, it was observed only a slight increase in cholesterol, especially as intracellular vesicles. The caveolin-1 expression was not altered by any of the compounds. Our data mainly show different effects of two cardiotonic steroids. Ouabain had no effect on the lipid profile of cells, whereas 21-BD causes important changes in cholesterol and phospholipid content. Therefore, the modulation of cholesterol content in the plasma membrane of HeLa cells is not correlated with the expression of caveolin-1.


Assuntos
Glicosídeos Cardíacos/metabolismo , Células CACO-2 , Caveolina 1 , Colesterol , Filipina , Células HeLa , Humanos , Ouabaína/farmacologia , Fosfolipídeos
7.
Cell Mol Neurobiol ; 41(3): 525-536, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32415577

RESUMO

Olfactory ensheathing cells (OECs) are specialized glial cells of the olfactory system, believed to play a role in the continuous production of olfactory neurons and ensheathment of their axons. Although OECs are used in therapeutic applications, little is known about the cellular mechanisms underlying their migratory behavior. Recently, we showed that OEC migration is sensitive to ganglioside blockage through A2B5 and Jones antibody in OEC culture. Gangliosides are common components of lipid rafts, where they participate in several cellular mechanisms, including cell migration. Here, we characterized OEC lipid rafts, analyzing the presence of specific proteins and gangliosides that are commonly expressed in motile neural cells, such as young neurons, oligodendrocyte progenitors, and glioma cells. Our results showed that lipid rafts isolated from OECs were enriched in cholesterol, sphingolipids, phosphatidylcholine, caveolin-1, flotillin-1, gangliosides GM1 and 9-O-acetyl GD3, A2B5-recognized gangliosides, CNPase, α-actinin, and ß1-integrin. Analysis of the actin cytoskeleton of OECs revealed stress fibers, membrane spikes, ruffled membranes and lamellipodia during cell migration, as well as the distribution of α-actinin in membrane projections. This is the first description of α-actinin and flotillin-1 in lipid rafts isolated from OECs and suggests that, together with ß1-integrin and gangliosides, membrane lipid rafts play a role during OEC migration. This study provides new information on the molecular composition of OEC membrane microdomains that can impact on our understanding of the role of OEC lipid rafts under physiological and pathological conditions of the nervous system, including inflammation, hypoxia, aging, neurodegenerative diseases, head trauma, brain tumor, and infection.


Assuntos
Microdomínios da Membrana/metabolismo , Bulbo Olfatório/citologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Colesterol/metabolismo , Proteínas do Citoesqueleto/metabolismo , Gangliosídeos/metabolismo , Microdomínios da Membrana/ultraestrutura , Ratos Wistar , Proteínas S100/metabolismo
8.
J Cell Biochem ; 120(3): 4081-4091, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30260008

RESUMO

Our study aimed to analyze the effect of ouabain (OUA) administration on lipopolysaccharide (LPS)-induced changes in hippocampus of rats. Oxidative parameters were analyzed in Wistar rats after intraperitoneal injection of OUA (1.8 µg/kg), LPS (200 µg/kg), or OUA plus LPS or saline. To reach our goal, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), in addition to levels of reduced glutathione (GSH), protein carbonyl (PCO) and lipid peroxidation (LPO) were evaluated. We also analyzed the membrane lipid profile and some important lipids for the nervous system, such as phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidic acid and sphingomyelin. The group that received only LPS showed increased oxidative stress, as evidenced by an increase in LPO (about twice), PCO (about three times) levels, and CAT activity (80%). Conversely, administration of LPS decreased GSH levels (55%), and GPx activity (30%), besides a reduction in the amount of PI (60%) and PC (45%). By other side, OUA alone increased the amount of PI (45%), PE (85%), and PC (70%). All harmful effects recorded were attenuated by OUA, suggesting a protective effect against LPS-induced oxidative stress. The relevance of our results extends beyond changes in oxidative parameters induced by LPS, because nanomolar doses of OUA may be useful in neurodegenerative models. Other studies on other cardenolides and substances related issues, as well as the development of new molecules derived from OUA, could also be useful in general oxidative and/or cellular stress, a condition favoring the appearance of neuronal pathologies.


Assuntos
Hipocampo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Ouabaína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Catalase/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Hipocampo/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Lipídeos de Membrana/metabolismo , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/metabolismo , Carbonilação Proteica/genética , Ratos , Superóxido Dismutase/metabolismo
9.
Int Immunol ; 30(4): 155-169, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29420746

RESUMO

The incidence of allergic diseases, which increased to epidemic proportions in developed countries over the last few decades, has been correlated with altered gut microbiota colonization. Although probiotics may play a critical role in the restoration of gut homeostasis, their efficiency in the control of allergy is controversial. Here, we aimed to investigate the effects of probiotic treatment initiated at neonatal or adult ages on the suppression of experimental ovalbumin (OVA)-induced asthma. Neonatal or adult mice were orally treated with probiotic bacteria and subjected to OVA-induced allergy. Asthma-like symptoms, microbiota composition and frequencies of the total CD4+ T lymphocytes and CD4+Foxp3+ regulatory T (Treg) cells were evaluated in both groups. Probiotic administration to neonates, but not to adults, was necessary and sufficient for the absolute prevention of experimental allergen-induced sensitization. The neonatally acquired tolerance, transferrable to probiotic-untreated adult recipients by splenic cells from tolerant donors, was associated with modulation of gut bacterial composition, augmented levels of cecum butyrate and selective accumulation of Treg cells in the airways. Our findings reveal that a cross-talk between a healthy microbiota and qualitative features inherent to neonatal T cells, especially in the Treg cell subset, might support the beneficial effect of perinatal exposure to probiotic bacteria on the development of long-term tolerance to allergens.


Assuntos
Asma/etiologia , Asma/prevenção & controle , Imunomodulação , Microbiota , Probióticos/administração & dosagem , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto , Alérgenos/imunologia , Animais , Antígenos/imunologia , Asma/diagnóstico , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Recém-Nascido , Camundongos , Gravidez
10.
Exp Physiol ; 104(4): 514-528, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653762

RESUMO

NEW FINDINGS: What is the central question of this study? Does glucocorticoid excess disrupt brown adipose tissue (BAT) phenotype and function? What is the main finding and its importance? Glucocorticoid excess induced an extensive remodelling of interscapular BAT, resulting in a white-like phenotype in association with metabolic disturbances. Glucocorticoids might be an important modulator of BAT physiology and BAT may have a role in pathophysiology of metabolic disturbances induced by glucocorticoid excess. ABSTRACT: In mammals, brown adipose tissue (BAT) is centrally involved in energy metabolism. To test the hypothesis that glucocorticoid excess disrupts BAT phenotype and function, male Wistar rats were treated with corticosterone in drinking water for 21 days. To confirm induction of glucocorticoid excess and metabolic disturbances, adrenal weight, corticotrophin releasing hormone mRNA levels and corticosterone serum levels were measured and a glucose tolerance test and serum triacylglycerol analyses were performed. Adipose tissue deposits were excised, weighed and evaluated by a set of biochemical, histological and molecular procedures, including thin-layer chromatography, histochemistry, immunohistochemistry, quantitative real-time polymerase chain reaction, high-resolution oxygraphy, ATP synthesis and enzymatic activity measurements. The approach was successful in induction of glucocorticoid excess and metabolic disturbances. Lower body weight and increased adiposity were observed in corticosterone-treated rats. Interscapular brown adipose tissue (iBAT) showed higher sensitivity to glucocorticoids than other fat deposits. The treatment induced lipid accumulation, unilocular rearrangement, increased collagen content and decreased innervation in iBAT. Furthermore, expression of Prdm16 (P < 0.05), Ucp1 (P <0.05) and Slc7a10 (P <0.05) mRNA decreased, while expression of Fasn (P <0.05) and Lep (P <0.05) mRNA increased in brown adipose tissue. Also, the levels of UCP1 diminished (P <0.001, 2.5-fold). Finally, lower oxygen consumption (P <0.05), ATP synthesis (P <0.05) and mitochondrial content (P <0.05) were observed in iBAT of glucocorticoid-treated rats. Glucocorticoid excess induced an extensive remodelling of interscapular brown adipose tissue, resulting in a white-like phenotype in association with metabolic disturbances.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Corticosterona/farmacologia , Tecido Adiposo Marrom/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Metabolismo Energético/efeitos dos fármacos , Glucocorticoides/metabolismo , Teste de Tolerância a Glucose/métodos , Masculino , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/metabolismo
11.
Br J Nutr ; 121(12): 1345-1356, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940241

RESUMO

Perinatal maternal high-fat diet (HFD) increases susceptibility to obesity and fatty liver diseases in adult offspring, which can be attenuated by the potent hypolipidaemic action of fish oil (FO), an n-3 PUFA source, during adult life. Previously, we described that adolescent HFD offspring showed resistance to FO hypolipidaemic effects, although FO promoted hepatic molecular changes suggestive of reduced lipid accumulation. Here, we investigated whether this FO intervention only during the adolescence period could affect offspring metabolism in adulthood. Then, female Wistar rats received isoenergetic, standard (STD: 9 % fat) or high-fat (HFD: 28·6 % fat) diet before mating, and throughout pregnancy and lactation. After weaning, male offspring received the standard diet; and from 25 to 45 d old they received oral administration of soyabean oil or FO. At 150 d old, serum and hepatic metabolic parameters were evaluated. Maternal HFD adult offspring showed increased body weight, visceral adiposity, hyperleptinaemia and decreased hepatic pSTAT3/STAT3 ratio, suggestive of hepatic leptin resistance. FO intake only during the adolescence period reduced visceral adiposity and serum leptin, regardless of maternal diet. Maternal HFD promoted dyslipidaemia and hepatic TAG accumulation, which was correlated with reduced hepatic carnitine palmitoyl transferase-1a content, suggesting lipid oxidation impairment. FO intake did not change serum lipids; however, it restored hepatic TAG content and hepatic markers of lipid oxidation to STD offspring levels. Therefore, we concluded that FO intake exclusively during adolescence programmed STD offspring and reprogrammed HFD offspring male rats to a healthier metabolic phenotype in adult life, reducing visceral adiposity, serum leptin and hepatic TAG content in offspring adulthood.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Dislipidemias/prevenção & controle , Óleos de Peixe/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Dislipidemias/etiologia , Ácidos Graxos Ômega-3/metabolismo , Feminino , Gordura Intra-Abdominal/metabolismo , Leptina/sangue , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
12.
Parasitol Res ; 118(9): 2609-2619, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267245

RESUMO

Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites undergo dramatic morphological and physiological changes during their life cycle. The human-infective metacyclic trypomastigotes differentiate from epimastigotes inside the midgut of the Triatominae insect vector. Our group has shown that the saliva and feces of Rhodnius prolixus contains a lysophospholipid, lysophosphatidylcholine (LPC), which modulates several aspects of T. cruzi infection in macrophages. LPC hydrolysis by a specific lysophospholipase D, autotaxin (ATX), generates lysophosphatidic acid (LPA). These bioactive lysophospholipids are multisignaling molecules and are found in human plasma ingested by the insect during blood feeding. Here, we show the role of LPC and LPA in T. cruzi proliferation and differentiation. Both lysophospholipids are able to induce parasite proliferation. We observed an increase in parasite growth with different fatty acyl chains, such as C18:0, C16:0, or C18:1 LPC. The dynamics of LPC and LPA effect on parasite proliferation was evaluated in vivo through a time- and space-dependent strategy in the vector gut. LPC but not LPA was also able to affect parasite metacyclogenesis. Finally, we determined LPA and LPC distribution in the parasite itself. Such bioactive lipids are associated with reservosomes of T. cruzi. To the best of our knowledge, this is the first study to suggest the role of surrounding bioactive lipids ingested during blood feeding in the control of parasite transmission.


Assuntos
Doença de Chagas/parasitologia , Metabolismo dos Lipídeos , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Animais , Doença de Chagas/transmissão , Humanos , Insetos Vetores/parasitologia , Estágios do Ciclo de Vida , Lipídeos/química , Rhodnius/parasitologia
13.
Pulm Pharmacol Ther ; 50: 100-110, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29702255

RESUMO

AIM: This study assessed pulmonary outcomes generated by inhibiting key enzymes of sphingolipid metabolism pathways related to ceramide synthesis in a murine model of lung injury induced by lipopolysaccharide (LPS). METHODS: C57BL/6 male adult mice received LPS intratracheally and the expressions of acid sphingomyelinase (ASM), neutral sphingomyelinase (NSM), serine palmitoyl transferase (SPT) and dihydroceramide synthase (DS) were assessed at 2, 4, 6, 12 and 24 h after LPS instillation in lung homogenate (n = 30). The pharmacological inhibition of ASM, NSM, SPT and DS were assayed in other mice groups by three different doses of desipramine, GW4869, myriocin and fumonisin, respectively (n = 90). Their most effective doses were administered intraperitoneally 1 or 2 h before LPS to different animal groups (n = 120). Mice underwent determination of pulmonary mechanics, lung histopathological aspects and apoptosis. RESULTS: The expression levels of the enzymes reached their peak at 2-4 h after LPS administration. ASM inhibition attenuated alveolar collapse and GW4869 decreased lung elastance, proinflammatory cytokines' levels and was more effective to improve alveolar collapse than desipramine. On the other hand, SPT blockage aggravated lung lesion and no effects it was observed with fumonisin. Moreover, simultaneous administration of inhibitors (desipramine + GW4869, myriocin + fumonisin and all inhibitors together) resulted in no changes. CONCLUSION: Blockage of sphingomyelinases and the de novo pathways improved and aggravated lung injury, respectively, putatively suggesting specific targets to therapeutic strategies in LPS-induced lung injury.


Assuntos
Lipopolissacarídeos/farmacologia , Lesão Pulmonar/induzido quimicamente , Esfingolipídeos/metabolismo , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/enzimologia , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo
14.
Parasitology ; 145(10): 1304-1310, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29806577

RESUMO

The anti-leishmania effects of HIV peptidase inhibitors (PIs) have been widely reported; however, the biochemical target and mode of action are still a matter of controversy in Leishmania parasites. Considering the possibility that HIV-PIs induce lipid accumulation in Leishmania amazonensis, we analysed the effects of lopinavir on the lipid metabolism of L. amazonensis promastigotes. To this end, parasites were treated with lopinavir at different concentrations and analysed by fluorescence microscopy and spectrofluorimetry, using a fluorescent lipophilic marker. Then, the cellular ultrastructure of treated and control parasites was analysed by transmission electron microscopy (TEM), and the lipid composition was investigated by thin-layer chromatography (TLC). Finally, the sterol content was assayed by gas chromatography-mass spectrometry (GC/MS). TEM analysis revealed an increased number of lipid inclusions in lopinavir-treated cells, which was accompanied by an increase in the lipophilic content, in a dose-dependent manner. TLC and GC-MS analysis revealed a marked increase of cholesterol-esters and cholesterol. In conclusion, lopinavir-induced lipid accumulation and affected lipid composition in L. amazonensis in a concentration-response manner. These data contribute to a better understanding of the possible mechanisms of action of this HIV-PI in L. amazonensis promastigotes. The concerted action of lopinavir on this and other cellular processes, such as the direct inhibition of an aspartyl peptidase, may be responsible for the arrested development of the parasite.


Assuntos
Inibidores da Protease de HIV/farmacologia , Leishmania mexicana/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/análise , Lopinavir/farmacologia , Colesterol/análise , Cromatografia em Camada Fina , Cromatografia Gasosa-Espectrometria de Massas , Leishmania mexicana/ultraestrutura , Microscopia Eletrônica de Transmissão , Esteróis/análise
15.
Exp Parasitol ; 195: 24-33, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30261188

RESUMO

Chagas disease, infecting ca. 8 million people in Central and South America, is mediated by the protozoan parasite, Trypanosoma cruzi. The parasite is transmitted by the bite of blood sucking triatomine insects, such as Rhodnius prolixus, that had previously fed on parasite-infected vertebrate blood and voided their contaminated feces and urine into the wound. The stages of the parasite life cycle in both the insect vector and human host are well-known, but determinants of infection in the insect gut are complex and enigmatic. This paper examines the possible role of the R. prolixus gut agglutinins in the parasite life cycle. The results, derived from gut extracts made from R. prolixus fed on various diets with different vertebrate blood components, and cross adsorption experiments, showed for the first time that R. prolixus has two distinct gut agglutinins originating from their vertebrate blood meal, one for T. cruzi (the parasite agglutinin, PA) and the other for the erythrocytes (the hemagglutinin, HA). Again, uniquely, the results also demonstrate that these two agglutinins are derived, respectively, from the plasma and erythrocyte components of the vertebrate blood. Subsequent experiments, examining in more detail the nature of the plasma components forming the T. cruzi PA, used fractionated extracts of the vertebrate plasma (high density lipoprotein, HDL; low density lipoprotein, LDL, and delipidated plasma) in agglutination assays. The results confirmed the identity of the PA as a high density lipoprotein (HDL) in the plasma of the vertebrate blood meal which agglutinates parasites in the R. prolixus gut. In addition, the use of single or double labeled HDL in fluorescence and confocal microscopy showed the interaction of the labeled HDL with the parasite surface and its internalization at later times. Finally, results of T. cruzi parasitization of R. prolixus, incorporating various vertebrate blood components, resulted in highly significant increases in infectivity in the presence of HDL from the 2nd day of infection, thus confirming the important role of this molecule in T. cruzi infection of R. prolixus.


Assuntos
Doença de Chagas/parasitologia , Insetos Vetores/parasitologia , Lipoproteínas/fisiologia , Rhodnius/parasitologia , Trypanosoma cruzi/fisiologia , Aglutinação , Aglutininas/sangue , Aglutininas/fisiologia , Animais , Doença de Chagas/sangue , Doença de Chagas/transmissão , Galinhas , Eritrócitos/química , Eritrócitos/parasitologia , Hemaglutinação , Cavalos , Humanos , Lipoproteínas/sangue , Coelhos , Ovinos
16.
Proc Natl Acad Sci U S A ; 112(48): 14936-41, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627243

RESUMO

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.


Assuntos
Adaptação Fisiológica/genética , Doença de Chagas , Interações Hospedeiro-Parasita/genética , Insetos Vetores , Rhodnius , Trypanosoma cruzi/fisiologia , Animais , Sequência de Bases , Transferência Genética Horizontal , Humanos , Insetos Vetores/genética , Insetos Vetores/parasitologia , Dados de Sequência Molecular , Rhodnius/genética , Rhodnius/parasitologia , Wolbachia/genética
17.
Parasitol Res ; 117(3): 793-799, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29352348

RESUMO

Despite the importance of fat body in metabolism of arthropods, studies in ticks are scarce. This study evaluated the lipid composition and activation of extracellular signal-regulated protein kinase (ERK) and AMP-activated protein kinase (AMPK) enzymes in Rhipicephalus microplus fat body after infection with different isolates of the fungus Metarhizium anisopliae sensu lato (Metschnikoff, 1879) Sorokin, 1883. The isolates CG 32, GC 112, GC 148, GC 347, and GC 629 were inoculated as viable or non-viable conidia in the ticks. The engorged females were dissected, and their fat bodies were collected 24 and 48 h after infection. The lipid composition was assessed by thin layer chromatography, and enzyme activation was detected by Western blotting with antibodies against p-AMPK and p-ERK. The study showed increased levels of triacylglycerol 24 and 48 h and fatty acid after 48 h after inoculation with different isolates of viable fungi in the tick's hemocoel. Detection of the active form of ERK was demonstrated only after inoculation with non-viable conidia of all isolates tested. The active form of AMPK, only isolate CG 112 was able to activate with viable or non-viable conidia, whereas isolates CG 32 and CG 629 were able to activate with non-viable conidia. This study provides the first report about changes in important metabolic pathways in ticks infected with entomopathogenic fungi and suggests that the lipid content is modulated by non-usual pathways. However, further studies may be necessary for a better elucidation of this interaction.


Assuntos
Metabolismo dos Lipídeos , Sistema de Sinalização das MAP Quinases , Metarhizium/fisiologia , Rhipicephalus/microbiologia , Animais , Cromatografia em Camada Fina , Corpo Adiposo/metabolismo , Feminino , Rhipicephalus/metabolismo , Esporos Fúngicos
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 246-254, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27871882

RESUMO

Mansonic schistosomiasis is a disease caused by the trematode Schistosoma mansoni, endemic to tropical countries. S. mansoni infection induces the formation of granulomas and potent polarization of Th2-type immune response. There is great interest in understanding the mechanisms used by this parasite that causes a modulation of the immune system. Recent studies from our group demonstrated that lipids of S. mansoni, including lysophosphatidylcholine (LPC) have immunomodulatory activity. In the present study, our aim was to investigate the role of lipids derived from S. mansoni in the activation and polarization of macrophages and to characterize the mechanisms involved in this process. Peritoneal macrophages obtained from wild type C57BL/6mice or bone marrow derived macrophages were stimulated in vitro with lipids extracted from adult worms of S. mansoni. We demonstrated that total schistosomal-derived lipids as well as purified LPC induced alternatively activated macrophages/M2 profile observed by increased expression of arginase-1, mannose receptor, Chi3l3, TGFß and production of IL-10 and PGE2 24h after stimulation. The involvement of the nuclear receptor PPARγ in macrophage response against LPC was investigated. Through Western blot and immunofluorescence confocal microscopy we demonstrated that schistosomal-derived LPC induces increased expression of PPARγ in macrophages. The LPC-induced increased expression of arginase-1 were significantly inhibited by the PPAR-γ antagonist GW9662. Together, these results demonstrate an immunomodulatory role of schistosomal-derived LPC in activating macrophages to a profile of the type M2 through PPARγ-dependent mechanisms, indicating a novel pathway for macrophage polarization triggered by parasite-derived LPC with potential implications to disease pathogenesis.


Assuntos
Lisofosfatidilcolinas/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/fisiologia , PPAR gama/metabolismo , Schistosoma mansoni/metabolismo , Animais , Arginase/metabolismo , Interleucina-10/metabolismo , Lipídeos/fisiologia , Ativação de Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Plant Cell Physiol ; 57(5): 1008-19, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26936789

RESUMO

We investigated the organelles involved in the biosynthesis of fatty acid (FA) derivatives in the cortical cells of Laurencia translucida (Rhodophyta) and the effect of these compounds as antifouling (AF) agents. A bluish autofluorescence (with emission at 500 nm) within L. translucida cortical cells was observed above the thallus surface via laser scanning confocal microscopy (LSCM). A hexanic extract (HE) from L. translucida was split into two isolated fractions called hydrocarbon (HC) and lipid (LI), which were subjected to HPLC coupled to a fluorescence detector, and the same autofluorescence pattern as observed by LSCM analyses (emission at 500 nm) was revealed in the LI fraction. These fractions were analyzed by gas chromatography-mass spectrometry (GC-MS), which revealed that docosane is the primary constituent of HC, and hexadecanoic acid and cholesterol trimethylsilyl ether are the primary components of LI. Nile red (NR) labeling (lipid fluorochrome) presented a similar cellular localization to that of the autofluorescent molecules. Transmission and scanning electron microscopy (TEM and SEM) revealed vesicle transport processes involving small electron-lucent vesicles, from vacuoles to the inner cell wall. Both fractions (HC and LI) inhibited micro-fouling [HC, lower minimum inhibitory concentration (MIC) values of 0.1 µg ml(-1); LI, lower MIC value of 10 µg ml(-1)]. The results suggested that L. translucida cortical cells can produce FA derivatives (e.g. HCs and FAs) and secrete them to the thallus surface, providing a unique and novel protective mechanism against microfouling colonization in red algae.


Assuntos
Ácidos Graxos/metabolismo , Rodófitas/fisiologia , Transporte Biológico , Parede Celular/química , Parede Celular/metabolismo , Exocitose , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Rodófitas/química , Vacúolos/metabolismo
20.
Antimicrob Agents Chemother ; 60(11): 6844-6852, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600041

RESUMO

Leishmaniasis affects mainly low-income populations in tropical regions. Radical innovation in drug discovery is time-consuming and expensive, imposing severe restrictions on the ability to launch new chemical entities for the treatment of neglected diseases. Drug repositioning is an attractive strategy for addressing a specific demand more easily. In this project, we have evaluated the antileishmanial activities of 30 drugs currently in clinical use for various morbidities. Ezetimibe, clinically used to reduce intestinal cholesterol absorption in dyslipidemic patients, killed Leishmania amazonensis promastigotes with a 50% inhibitory concentration (IC50) of 30 µM. Morphological analysis revealed that ezetimibe caused the parasites to become rounded, with multiple nuclei and flagella. Analysis by gas chromatography (GC)-mass spectrometry (MS) showed that promastigotes treated with ezetimibe had smaller amounts of C-14-demethylated sterols, and accumulated more cholesterol and lanosterol, than untreated promastigotes. We then evaluated the combination of ezetimibe with well-known antileishmanial azoles. The fractional inhibitory concentration index (FICI) indicated synergy when ezetimibe was combined with ketoconazole or miconazole. The activity of ezetimibe against intracellular amastigotes was confirmed, with an IC50 of 20 µM, and ezetimibe reduced the IC90s of ketoconazole and miconazole from 11.3 and 11.5 µM to 4.14 and 8.25 µM, respectively. Subsequently, we confirmed the activity of ezetimibe in vivo, showing that it decreased lesion development and parasite loads in murine cutaneous leishmaniasis. We concluded that ezetimibe has promising antileishmanial activity and should be considered in combination with azoles in further preclinical and clinical studies.


Assuntos
Azóis/farmacologia , Ezetimiba/farmacologia , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Tripanossomicidas/farmacologia , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Concentração Inibidora 50 , Leishmania mexicana/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos BALB C , Esteróis/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA