RESUMO
Life originated in an anoxic, Fe2+-rich environment. We hypothesize that on early Earth, Fe2+ was a ubiquitous cofactor for nucleic acids, with roles in RNA folding and catalysis as well as in processing of nucleic acids by protein enzymes. In this model, Mg2+ replaced Fe2+ as the primary cofactor for nucleic acids in parallel with known metal substitutions of metalloproteins, driven by the Great Oxidation Event. To test predictions of this model, we assay the ability of nucleic acid processing enzymes, including a DNA polymerase, an RNA polymerase and a DNA ligase, to use Fe2+ in place of Mg2+ as a cofactor during catalysis. Results show that Fe2+ can indeed substitute for Mg2+ in catalytic function of these enzymes. Additionally, we use calculations to unravel differences in energetics, structures and reactivities of relevant Mg2+ and Fe2+ complexes. Computation explains why Fe2+ can be a more potent cofactor than Mg2+ in a variety of folding and catalytic functions. We propose that the rise of O2 on Earth drove a Fe2+ to Mg2+ substitution in proteins and nucleic acids, a hypothesis consistent with a general model in which some modern biochemical systems retain latent abilities to revert to primordial Fe2+-based states when exposed to pre-GOE conditions.
Assuntos
Coenzimas/química , Ferro/química , Catálise , DNA Ligases/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Magnésio/química , Oxirredução , Proteínas Virais/metabolismoRESUMO
The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures.
Assuntos
Genoma Viral , Conformação de Ácido Nucleico , RNA Viral/química , Vírus Satélite do Mosaico do Tabaco/genética , Algoritmos , Biologia Computacional/métodos , Microscopia Crioeletrônica , Conformação MolecularRESUMO
In a model describing the origin and evolution of the translation system, ribosomal RNA (rRNA) grew in size by accretion [Petrov, A. S., et al. (2015) History of the Ribosome and the Origin of Translation. Proc. Natl. Acad. Sci. U.S.A. 112, 15396-15401]. Large rRNAs were built up by iterative incorporation and encasement of small folded RNAs, in analogy with addition of new LEGOs onto the surface of a preexisting LEGO assembly. In this model, rRNA robustness in folding arises from inherited autonomy of local folding. We propose that rRNAs can be decomposed at various granularities, retaining folding mechanism and folding competence. To test these predictions, we disassembled Domain III of the large ribosomal subunit (LSU). We determined whether local rRNA structure, stability, and folding pathways are autonomous. Thermal melting, chemical footprinting, and circular dichroism were used to infer rules that govern folding of rRNA. We deconstructed Domain III of the LSU rRNA by mapping out its complex multistep melting pathway. We studied Domain III and two equal-size "sub-Domains" of Domain III. The combined results are consistent with a model in which melting transitions of Domain III are conserved upon cleavage into sub-Domains. Each of the eight melting transitions of Domain III corresponds in Tm and ΔH with a transition observed in one of the two isolated sub-Domains. The results support a model in which structure, stability, and folding mechanisms are dominated by local interactions and are unaffected by separation of the sub-Domains. Domain III rRNA is distinct from RNAs that form long-range cooperative interaction networks at early stages of folding or that do not fold reversibly.
Assuntos
Evolução Química , Conformação de Ácido Nucleico , RNA Ribossômico/química , Dicroísmo Circular , Magnésio/química , Sódio/química , Espectrofotometria Ultravioleta , TermodinâmicaRESUMO
Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates â¼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure and (iii) form native complexes with ribosomal protein fragments. Footprinting experiments support formation of predicted secondary and tertiary structure. Gel shift, spectroscopic and yeast three-hybrid assays show specific interactions between ancestral rRNA and ribosomal protein fragments, independent of other, more recent, components of the ribosome. This robustness suggests that the catalytic core of the ribosome is an ancient construct that has survived billions of years of evolution without major changes in structure. Collectively, the data here support a model in which ancestors of the large and small subunits originated and evolved independently of each other, with autonomous functionalities.
Assuntos
Evolução Molecular , Modelos Genéticos , Ribossomos/genética , Magnésio/química , Modelos Moleculares , Conformação de Ácido Nucleico , Fragmentos de Peptídeos/química , Ligação Proteica , Clivagem do RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Ribonuclease H/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Thermus thermophilus/genéticaRESUMO
The three-dimensional structure of the ribosomal large subunit (LSU) reveals a single morphological element, although the 23S rRNA is contained in six secondary structure domains. Based upon maps of inter- and intra-domain interactions and proposed evolutionary pathways of development, we hypothesize that Domain III is a truly independent structural domain of the LSU. Domain III is primarily stabilized by intra-domain interactions, negligibly perturbed by inter-domain interactions, and is not penetrated by ribosomal proteins or other rRNA. We have probed the structure of Domain III rRNA alone and when contained within the intact 23S rRNA using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension), in the absence and presence of magnesium. The combined results support the hypothesis that Domain III alone folds to a near-native state with secondary structure, intra-domain tertiary interactions, and inter-domain interactions that are independent of whether or not it is embedded in the intact 23S rRNA or within the LSU. The data presented support previous suggestions that Domain III was added relatively late in ribosomal evolution.
Assuntos
Conformação de Ácido Nucleico , RNA Ribossômico 23S/genética , Thermus thermophilus/genéticaRESUMO
The mature nucleocapsid protein of HIV-1, NCp7, and the NC domains in gag precursors are attractive targets for anti-AIDS drug discovery. The stability of the 1:1 complex of NCp7 with a 20mer mimic of stem-loop 3 RNA (SL3, also called psi-RNA, in the packaging domain of genomic RNA) is strongly affected by changes in ionic strength. NC domains recognize and specifically package genomic HIV-1 RNA, while electrostatic attractions and high concentrations of protein and RNA drive NCp7 to completely coat the RNA in the mature virion. The specific interactions of NCp7 binding to loop bases of SL3 produce 1:1 complexes in solutions that have a NaCl concentration of >or=0.2 M, while the electrostatic interactions can dominate at Assuntos
RNA Viral/metabolismo
, Cloreto de Sódio/farmacologia
, Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
, Humanos
, Concentração Osmolar
, RNA Viral/química
, Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
RESUMO
In evolutionary biology, the relationship between genotype and Darwinian fitness is known as a fitness landscape. These landscapes underlie natural selection, so understanding them would greatly improve quantitative prediction of evolutionary outcomes, guiding the development of synthetic living systems. However, the structure of fitness landscapes is essentially unknown. Our ability to experimentally probe these landscapes is physically limited by the number of different sequences that can be identified. This number has increased dramatically in the last several years, leading to qualitatively new investigations. Several approaches to illuminate fitness landscapes are possible, ranging from tight focus on a single peak to random speckling or even comprehensive coverage of an entire landscape. We discuss recent experimental studies of fitness landscapes, with a special focus on functional RNA, an important system for both synthetic cells and the origin of life.
Assuntos
Evolução Molecular , Aptidão Genética , RNA/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA/química , RNA/metabolismoRESUMO
Satellite tobacco mosaic virus (STMV) is a T = 1 icosahedral virus with a single-stranded RNA genome. It is widely accepted that the RNA genome plays an important structural role during assembly of the STMV virion. While the encapsidated form of the RNA has been extensively studied, less is known about the structure of the free RNA, aside from a purported tRNA-like structure at the 3' end. Here we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis to examine the secondary structure of in vitro transcribed STMV RNA. The predicted secondary structure is unusual in the sense that it is highly extended, which could be significant for protecting the RNA from degradation. The SHAPE data are also consistent with the previously predicted tRNA-like fold at the 3' end of the molecule, which is also known to hinder degradation. Our data are not consistent with the secondary structure proposed for the encapsidated RNA by Schroeder et al., suggesting that, if the Schroeder structure is correct, either the RNA is packaged as it emerges from the replication complex, or the RNA undergoes extensive refolding upon encapsidation. We also consider the alternative, i.e., that the structure of the encapsidated STMV RNA might be the same as the in vitro structure presented here, and we examine how this structure might be organized in the virus. This possibility is not rigorously ruled out by the available data, so it remains open to examination by experiment.
Assuntos
Nicotiana/genética , Conformação de Ácido Nucleico , RNA de Transferência , RNA Viral , Pareamento de Bases , Genoma , RNA de Transferência/química , RNA de Transferência/genética , RNA Viral/química , RNA Viral/genética , Nicotiana/virologia , Vírus Satélite do Mosaico do Tabaco , VírionRESUMO
Mg(2+) is essential for RNA folding and catalysis. However, for the first 1.5 billion years of life on Earth RNA inhabited an anoxic Earth with abundant and benign Fe(2+). We hypothesize that Fe(2+) was an RNA cofactor when iron was abundant, and was substantially replaced by Mg(2+) during a period known as the 'great oxidation', brought on by photosynthesis. Here, we demonstrate that reversing this putative metal substitution in an anoxic environment, by removing Mg(2+) and replacing it with Fe(2+), expands the catalytic repertoire of RNA. Fe(2+) can confer on some RNAs a previously uncharacterized ability to catalyse single-electron transfer. We propose that RNA function, in analogy with protein function, can be understood fully only in the context of association with a range of possible metals. The catalysis of electron transfer, requisite for metabolic activity, may have been attenuated in RNA by photosynthesis and the rise of O2.
Assuntos
Biocatálise , Ferro/metabolismo , RNA/metabolismo , Transporte de ElétronsRESUMO
Mg²âº shares a distinctive relationship with RNA, playing important and specific roles in the folding and function of essentially all large RNAs. Here we use theory and experiment to evaluate Fe²âº in the absence of free oxygen as a replacement for Mg²âº in RNA folding and catalysis. We describe both quantum mechanical calculations and experiments that suggest that the roles of Mg²âº in RNA folding and function can indeed be served by Fe²âº. The results of quantum mechanical calculations show that the geometry of coordination of Fe²âº by RNA phosphates is similar to that of Mg²âº. Chemical footprinting experiments suggest that the conformation of the Tetrahymena thermophila Group I intron P4-P6 domain RNA is conserved between complexes with Fe²âº or Mg²âº. The catalytic activities of both the L1 ribozyme ligase, obtained previously by in vitro selection in the presence of Mg²âº, and the hammerhead ribozyme are enhanced in the presence of Fe²âº compared to Mg²âº. All chemical footprinting and ribozyme assays in the presence of Fe²âº were performed under anaerobic conditions. The primary motivation of this work is to understand RNA in plausible early earth conditions. Life originated during the early Archean Eon, characterized by a non-oxidative atmosphere and abundant soluble Fe²âº. The combined biochemical and paleogeological data are consistent with a role for Fe²âº in an RNA World. RNA and Fe²âº could, in principle, support an array of RNA structures and catalytic functions more diverse than RNA with Mg²âº alone.