RESUMO
The metal-dependent M17 aminopeptidases are conserved throughout all kingdoms of life. This large enzyme family is characterized by a conserved binuclear metal center and a distinctive homohexameric arrangement. Recently, we showed that hexamer formation in Plasmodium M17 aminopeptidases was controlled by the metal ion environment, although the functional necessity for hexamer formation is still unclear. To further understand the mechanistic role of the hexameric assembly, here we undertook an investigation of the structure and dynamics of the M17 aminopeptidase from Plasmodium falciparum, PfA-M17. We describe a novel structure of PfA-M17, which shows that the active sites of each trimer are linked by a dynamic loop, and loop movement is coupled with a drastic rearrangement of the binuclear metal center and substrate-binding pocket, rendering the protein inactive. Molecular dynamics simulations and biochemical analyses of PfA-M17 variants demonstrated that this rearrangement is inherent to PfA-M17, and that the transition between the active and inactive states is metal dependent and part of a dynamic regulatory mechanism. Key to the mechanism is a remodeling of the binuclear metal center, which occurs in response to a signal from the neighboring active site and serves to moderate the rate of proteolysis under different environmental conditions. In conclusion, this work identifies a precise mechanism by which oligomerization contributes to PfA-M17 function. Furthermore, it describes a novel role for metal cofactors in the regulation of enzymes, with implications for the wide range of metalloenzymes that operate via a two-metal ion catalytic center, including DNA processing enzymes and metalloproteases.
Assuntos
Aminopeptidases , Plasmodium falciparum/enzimologia , Aminopeptidases/química , Aminopeptidases/metabolismo , Domínio Catalítico , Metais/metabolismo , Plasmodium falciparum/metabolismoRESUMO
Our goal is to present recent progress in understanding the biological mechanisms underlying anemia from a public health perspective. We describe important advances in understanding common causes of anemia and their interactions, including iron deficiency (ID), lack of other micronutrients, infection, inflammation, and genetic conditions. ID develops if the iron circulating in the blood cannot provide the amounts required for red blood cell production and tissue needs. ID anemia develops as iron-limited red blood cell production fails to maintain the hemoglobin concentration above the threshold used to define anemia. Globally, absolute ID (absent or reduced body iron stores that do not meet the need for iron of an individual but may respond to iron supplementation) contributes to only a limited proportion of anemia. Functional ID (adequate or increased iron stores that cannot meet the need for iron because of the effects of infection or inflammation and does not respond to iron supplementation) is frequently responsible for anemia in low- and middle-income countries. Absolute and functional ID may coexist. We highlight continued improvement in understanding the roles of infections and inflammation in causing a large proportion of anemia. Deficiencies of nutrients other than iron are less common but important in some settings. The importance of genetic conditions as causes of anemia depends upon the specific inherited red blood cell abnormalities and their prevalence in the settings examined. From a public health perspective, each setting has a distinctive composition of components underlying the common causes of anemia. We emphasize the coincidence between regions with a high prevalence of anemia attributed to ID (both absolute and functional), those with endemic infections, and those with widespread genetic conditions affecting red blood cells, especially in sub-Saharan Africa and regions in Asia and Oceania.
Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Humanos , Saúde Pública , Anemia/epidemiologia , Anemia/etiologia , Ferro , Inflamação/complicações , Biologia , PrevalênciaRESUMO
M17 leucyl aminopeptidases are metal-dependent exopeptidases that rely on oligomerization to diversify their functional roles. The M17 aminopeptidases from Plasmodium falciparum (PfA-M17) and Plasmodium vivax (Pv-M17) function as catalytically active hexamers to generate free amino acids from human hemoglobin and are drug targets for the design of novel antimalarial agents. However, the molecular basis for oligomeric assembly is not fully understood. In this study, we found that the active site metal ions essential for catalytic activity have a secondary structural role mediating the formation of active hexamers. We found that PfA-M17 and Pv-M17 exist in a metal-dependent dynamic equilibrium between active hexameric species and smaller inactive species that can be controlled by manipulating the identity and concentration of metals available. Mutation of residues involved in metal ion binding impaired catalytic activity and the formation of active hexamers. Structural resolution of Pv-M17 by cryoelectron microscopy and X-ray crystallography together with solution studies revealed that PfA-M17 and Pv-M17 bind metal ions and substrates in a conserved fashion, although Pv-M17 forms the active hexamer more readily and processes substrates faster than PfA-M17. On the basis of these studies, we propose a dynamic equilibrium between monomer â dimer â tetramer â hexamer, which becomes directional toward the large oligomeric states with the addition of metal ions. This sophisticated metal-dependent dynamic equilibrium may apply to other M17 aminopeptidases and underpin the moonlighting capabilities of this enzyme family.
Assuntos
Aminopeptidases/química , Manganês/química , Plasmodium falciparum/enzimologia , Plasmodium vivax/enzimologia , Multimerização Proteica , Proteínas de Protozoários/química , Aminopeptidases/genética , Aminopeptidases/metabolismo , Domínio Catalítico , Cátions Bivalentes , Clonagem Molecular , Cobalto/química , Cobalto/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Dipeptídeos/química , Dipeptídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Magnésio/química , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Mutação , Plasmodium falciparum/genética , Plasmodium vivax/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Zinco/química , Zinco/metabolismoRESUMO
Malaria and invasive non-typhoidal Salmonella (NTS) are life-threatening infections that often co-exist in African children. The iron-regulatory hormone hepcidin is highly upregulated during malaria and controls the availability of iron, a critical nutrient for bacterial growth. We investigated the relationship between Plasmodium falciparum malaria and NTS bacteremia in all pediatric admissions aged <5 years between August 1998 and October 2019 (n=75,034). We then assayed hepcidin and measures of iron status in five groups: (1) children with concomitant severe malarial anemia (SMA) and NTS (SMA+NTS, n=16); and in matched children with (2) SMA (n=33); (3) NTS (n=33); (4) cerebral malaria (CM, n=34); and (5) community-based children. SMA and severe anemia without malaria were associated with a 2-fold or more increased risk of NTS bacteremia, while other malaria phenotypes were not associated with increased NTS risk. Children with SMA had lower hepcidin/ferritin ratios (0.10; interquartile range [IQR]: 0.03-0.19) than those with CM (0.24; IQR: 0.14-0.69; P=0.006) or asymptomatic malaria (0.19; IQR: 0.09-0.46; P=0.01) indicating suppressed hepcidin levels. Children with SMA+NTS had lower hepcidin levels (9.3 ng/mL; IQR: 4.7-49.8) and hepcidin/ferritin ratios (0.03; IQR: 0.01-0.22) than those with NTS alone (105.8 ng/mL; IQR: 17.3-233.3; P=0.02 and 0.31; IQR: 0.06-0.66; P=0.007, respectively). Since hepcidin degrades ferroportin on the Salmonella-containing vacuole, we hypothesize that reduced hepcidin in children with SMA might contribute to NTS growth by modulating iron availability for bacterial growth. Further studies are needed to understand how the hepcidin-ferroportin axis might mediate susceptibility to NTS in severely anemic children.
Assuntos
Anemia , Bacteriemia , Malária Falciparum , Malária , Anemia/complicações , Bacteriemia/complicações , Bacteriemia/microbiologia , Criança , Ferritinas , Hepcidinas , Humanos , Ferro , Quênia/epidemiologia , Malária/complicações , Malária Falciparum/complicações , SalmonellaRESUMO
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.
Assuntos
Isquemia Encefálica , Doenças Metabólicas , Acidente Vascular Cerebral , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Citocina TWEAK , Humanos , Inflamação/metabolismo , Receptores de Superfície Celular , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor de TWEAK , Fatores de Necrose Tumoral/metabolismoRESUMO
The sequestration of iron in case of infection, termed nutritional immunity, is an established strategy of host defense. However, the interaction between pathogens and the mammalian iron storage protein ferritin is hitherto not completely understood. To better characterize the function of ferritin in Gram-negative infections, we incubated iron-starved cultures of Salmonella Typhimurium and knockout mutant strains defective for major iron uptake pathways or Escherichia coli with horse spleen ferritin or ionic iron as the sole iron source. Additionally, we added bovine superoxide dismutase and protease inhibitors to the growth medium to assess the effect of superoxide and bacterial proteases, respectively, on Salmonella proliferation and reductive iron release. Compared to free ionic iron, ferritin-bound iron was less available to Salmonella, but was still sufficient to significantly enhance the growth of the bacteria. In the absence of various iron acquisition genes, the availability of ferritin iron further decreased. Supplementation with superoxide dismutase significantly reduced the growth of the ΔentC knockout strain with holoferritin as the sole iron source in comparison with ionic ferrous iron. In contrast, this difference was not observed in the wildtype strain, suggesting that superoxide dismutase undermines bacterial iron uptake from ferritin by siderophore-independent mechanisms. Ferritin seems to diminish iron availability for bacteria in comparison to ionic iron, and its iron sequestering effect could possibly be enhanced by host superoxide dismutase activity.
Assuntos
Ferritinas , Ferro , Bovinos , Animais , Cavalos , Ferritinas/metabolismo , Ferro/metabolismo , Enterobacteriaceae , Salmonella typhimurium , Superóxido Dismutase/metabolismo , Escherichia coli/metabolismo , Mamíferos/metabolismoRESUMO
BACKGROUND: Iron deficiency (ID) and malaria are common causes of ill-health and disability among children living in sub-Saharan Africa. Although iron is critical for the acquisition of humoral immunity, little is known about the effects of ID on antibody responses to Plasmodium falciparum malaria. METHODS: The study included 1794 Kenyan and Ugandan children aged 0-7 years. We measured biomarkers of iron and inflammation, and antibodies to P. falciparum antigens including apical merozoite antigen 1 (anti-AMA-1) and merozoite surface antigen 1 (anti-MSP-1) in cross-sectional and longitudinal studies. RESULTS: The overall prevalence of ID was 31%. ID was associated with lower anti-AMA-1 and anti-MSP-1 antibody levels in pooled analyses adjusted for age, sex, study site, inflammation, and P. falciparum parasitemia (adjusted mean difference on a log-transformed scale (ß) -0.46; 95 confidence interval [CI], -.66, -.25 Pâ <â .0001; ß -0.33; 95 CI, -.50, -.16 Pâ <â .0001, respectively). Additional covariates for malaria exposure index, previous malaria episodes, and time since last malaria episode were available for individual cohorts. Meta-analysis was used to allow for these adjustments giving ß -0.34; -0.52, -0.16 for anti-AMA-1 antibodies and ß -0.26; -0.41, -0.11 for anti-MSP-1 antibodies. Low transferrin saturation was similarly associated with reduced anti-AMA-1 antibody levels. Lower AMA-1 and MSP-1-specific antibody levels persisted over time in iron-deficient children. CONCLUSIONS: Reduced levels of P. falciparum-specific antibodies in iron-deficient children might reflect impaired acquisition of immunity to malaria and/or reduced malaria exposure. Strategies to prevent and treat ID may influence antibody responses to malaria for children living in sub-Saharan Africa.
Assuntos
Anemia Ferropriva , Malária Falciparum , Anemia Ferropriva/epidemiologia , Anticorpos Antiprotozoários , Antígenos de Protozoários , Criança , Estudos Transversais , Humanos , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparumRESUMO
BACKGROUND: Children living in sub-Saharan Africa have a high burden of rickets and infectious diseases, conditions that are linked to vitamin D deficiency. However, data on the vitamin D status of young African children and its environmental and genetic predictors are limited. We aimed to examine the prevalence and predictors of vitamin D deficiency in young African children. METHODS: We measured 25-hydroxyvitamin D (25(OH)D) and typed the single nucleotide polymorphisms, rs4588 and rs7041, in the GC gene encoding the vitamin D binding protein (DBP) in 4509 children aged 0-8 years living in Kenya, Uganda, Burkina Faso, The Gambia and South Africa. We evaluated associations between vitamin D status and country, age, sex, season, anthropometric indices, inflammation, malaria and DBP haplotypes in regression analyses. RESULTS: Median age was 23.9 months (interquartile range [IQR] 12.3, 35.9). Prevalence of vitamin D deficiency using 25(OH)D cut-offs of < 30 nmol/L and < 50 nmol/L was 0.6% (95% CI 0.4, 0.9) and 7.8% (95% CI 7.0, 8.5), respectively. Overall median 25(OH)D level was 77.6 nmol/L (IQR 63.6, 94.2). 25(OH)D levels were lower in South Africa, in older children, during winter or the long rains, and in those with afebrile malaria, and higher in children with inflammation. 25(OH)D levels did not vary by stunting, wasting or underweight in adjusted regression models. The distribution of Gc variants was Gc1f 83.3%, Gc1s 8.5% and Gc2 8.2% overall and varied by country. Individuals carrying the Gc2 variant had lower median 25(OH)D levels (72.4 nmol/L (IQR 59.4, 86.5) than those carrying the Gc1f (77.3 nmol/L (IQR 63.5, 92.8)) or Gc1s (78.9 nmol/L (IQR 63.8, 95.5)) variants. CONCLUSIONS: Approximately 0.6% and 7.8% of young African children were vitamin D deficient as defined by 25(OH)D levels < 30 nmol/L and < 50 nmol/L, respectively. Latitude, age, season, and prevalence of inflammation and malaria should be considered in strategies to assess and manage vitamin D deficiency in young children living in Africa.
Assuntos
Deficiência de Vitamina D , Adulto , Criança , Pré-Escolar , Haplótipos , Humanos , Prevalência , Estações do Ano , África do Sul , Vitamina D , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/epidemiologia , Proteína de Ligação a Vitamina D/genética , Adulto JovemRESUMO
The cytoplasmic retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) initiate interferon (IFN) production and antiviral gene expression in response to RNA virus infection. Consequently, RLR signalling is tightly regulated by both host and viral factors. Tripartite motif protein 25 (TRIM25) is an E3 ligase that ubiquitinates multiple substrates within the RLR signalling cascade, playing both ubiquitination-dependent and -independent roles in RIG-I-mediated IFN induction. However, additional regulatory roles are emerging. Here, we show a novel interaction between TRIM25 and another protein in the RLR pathway that is essential for type I IFN induction, DEAD-box helicase 3X (DDX3X). In vitro assays and knockdown studies reveal that TRIM25 ubiquitinates DDX3X at lysine 55 (K55) and that TRIM25 and DDX3X cooperatively enhance IFNB1 induction following RIG-I activation, but the latter is independent of TRIM25's catalytic activity. Furthermore, we found that the influenza A virus non-structural protein 1 (NS1) disrupts the TRIM25:DDX3X interaction, abrogating both TRIM25-mediated ubiquitination of DDX3X and cooperative activation of the IFNB1 promoter. Thus, our results reveal a new interplay between two RLR-host proteins that cooperatively enhance IFN-ß production. We also uncover a new and further mechanism by which influenza A virus NS1 suppresses host antiviral defence.
Assuntos
Antivirais/imunologia , Proteína DEAD-box 58/imunologia , RNA Helicases DEAD-box/imunologia , Imunidade/imunologia , Receptores Imunológicos/imunologia , Fatores de Transcrição/imunologia , Proteínas com Motivo Tripartido/imunologia , Ubiquitina-Proteína Ligases/imunologia , Linhagem Celular , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Vírus da Influenza A/imunologia , Interferons/imunologia , Regiões Promotoras Genéticas/imunologia , Ligação Proteica/imunologia , Transdução de Sinais/imunologia , Ubiquitinação/imunologiaRESUMO
Seeing the entwinement of social and epistemic challenges through COVID, we discuss the perils of simplistic appeals to 'follow the science'. A hardened scientism risks excarbating social conflict and fueling conspiracy beliefs. Instead, we see an opportunity to devise more inclusive medical knowledge practices through endorsing experiential knowledge alongside traditional evidence types.
Assuntos
COVID-19/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Conhecimento , HumanosRESUMO
BACKGROUND: Iron deficiency (ID) is a major public health burden in African children and accurate prevalence estimates are important for effective nutritional interventions. However, ID may be incorrectly estimated in Africa because most measures of iron status are altered by inflammation and infections such as malaria. Through the current study, we have assessed different approaches to the prediction of iron status and estimated the burden of ID in African children. METHODS: We assayed iron and inflammatory biomarkers in 4853 children aged 0-8 years from Kenya, Uganda, Burkina Faso, South Africa, and The Gambia. We described iron status and its relationship with age, sex, inflammation, and malaria parasitemia. We defined ID using the WHO guideline (ferritin < 12 µg/L or < 30 µg/L in the presence of inflammation in children < 5 years old or < 15 µg/L in children ≥ 5 years old). We compared this with a recently proposed gold standard, which uses regression-correction for ferritin levels based on the relationship between ferritin levels, inflammatory markers, and malaria. We further investigated the utility of other iron biomarkers in predicting ID using the inflammation and malaria regression-corrected estimate as a gold standard. RESULTS: The prevalence of ID was highest at 1 year of age and in male infants. Inflammation and malaria parasitemia were associated with all iron biomarkers, although transferrin saturation was least affected. Overall prevalence of WHO-defined ID was 34% compared to 52% using the inflammation and malaria regression-corrected estimate. This unidentified burden of ID increased with age and was highest in countries with high prevalence of inflammation and malaria, where up to a quarter of iron-deficient children were misclassified as iron replete. Transferrin saturation < 11% most closely predicted the prevalence of ID according to the regression-correction gold standard. CONCLUSIONS: The prevalence of ID is underestimated in African children when defined using the WHO guidelines, especially in malaria-endemic populations, and the use of transferrin saturation may provide a more accurate approach. Further research is needed to identify the most accurate measures for determining the prevalence of ID in sub-Saharan Africa.
Assuntos
Anemia Ferropriva/epidemiologia , África , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , MasculinoRESUMO
Severe anaemia and invasive bacterial infections are common causes of childhood sickness and death in sub-Saharan Africa. Accumulating evidence suggests that severely anaemic African children may have a higher risk of invasive bacterial infections. However, the mechanisms underlying this association remain poorly described. Severe anaemia is characterized by increased haemolysis, erythropoietic drive, gut permeability, and disruption of immune regulatory systems. These pathways are associated with dysregulation of iron homeostasis, including the downregulation of the hepatic hormone hepcidin. Increased haemolysis and low hepcidin levels potentially increase plasma, tissue and intracellular iron levels. Pathogenic bacteria require iron and/or haem to proliferate and have evolved numerous strategies to acquire labile and protein-bound iron/haem. In this review, we discuss how severe anaemia may mediate the risk of invasive bacterial infections through dysregulation of hepcidin and/or iron homeostasis, and potential studies that could be conducted to test this hypothesis.
Assuntos
Anemia Ferropriva , Infecções Bacterianas , Hepcidinas/metabolismo , Ferro/metabolismo , África , Anemia Ferropriva/complicações , Anemia Ferropriva/metabolismo , Anemia Ferropriva/patologia , Infecções Bacterianas/etiologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Criança , Feminino , Humanos , Masculino , Fatores de Risco , Índice de Gravidade de DoençaRESUMO
This paper explores the ways in which community wellbeing is, and could be, related to individual subjective wellbeing by mapping current practice, teasing out the assumptions underlying a dominant approach and flagging neglected issues. The notion of community is widely understood as about something more than the sum of the parts. Capturing subjective aspects of local life that are not simply individual but reflect the ways in which people feel and are well together is a challenging undertaking. Most existing frameworks for assessing community wellbeing are premised on a theory of the self as an autonomous, rational and independently acting or feeling individual, and the primary interest is on how community aspects of life impact on individual subjective wellbeing. This dominant approach consistently neglects spatial and social inequalities, multiple settings and scales and temporal choices and legacies, all of which constitute important political dimensions to community wellbeing. Social theories of the self as relational put relations as prior to subjectivity and as such afford ways to conceptualise community wellbeing in terms of being well together. A relational approach can also offer routes to tackling the complex interactions of inequality, scale and time. Such an approach is not, however, easily translated into quantitative measures or simple policy interventions. The approach taken to community wellbeing is not a technological issue but a political choice.
RESUMO
BACKGROUND: It remains unclear whether improving iron status increases malaria risk, and few studies have looked at the effect of host iron status on subsequent malaria infection. We therefore aimed to determine whether a child's iron status influences their subsequent risk of malaria infection in sub-Saharan Africa. METHODS: We assayed iron and inflammatory biomarkers from community-based cohorts of 1309 Kenyan and 1374 Ugandan children aged 0-7 years and conducted prospective surveillance for episodes of malaria. Poisson regression models were fitted to determine the effect of iron status on the incidence rate ratio (IRR) of malaria using longitudinal data covering a period of 6 months. Models were adjusted for age, sex, parasitemia, inflammation, and study site. RESULTS: At baseline, the prevalence of iron deficiency (ID) was 36.9% and 34.6% in Kenyan and Ugandan children, respectively. ID anemia (IDA) affected 23.6% of Kenyan and 17.6% of Ugandan children. Malaria risk was lower in children with ID (IRR, 0.7; 95% confidence interval [CI], 0.6, 0.8; P < .001) and IDA (IRR, 0.7; 95% CI, 0.6, 0.9; P = .006). Low transferrin saturation (<10%) was similarly associated with lower malaria risk (IRR, 0.8; 95% CI, 0.6, 0.9; P = .016). However, variation in hepcidin, soluble transferrin receptors (sTfR), and hemoglobin/anemia was not associated with altered malaria risk. CONCLUSIONS: ID appears to protect against malaria infection in African children when defined using ferritin and transferrin saturation, but not when defined by hepcidin, sTfR, or hemoglobin. Additional research is required to determine causality. CLINICAL TRIALS REGISTRATION: ISRCTN32849447.
Assuntos
Ferro/sangue , Malária/epidemiologia , Oligoelementos/sangue , Criança , Pré-Escolar , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Estudos Longitudinais , Masculino , Estado Nutricional , Prevalência , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Fatores de Risco , Uganda/epidemiologiaRESUMO
BACKGROUND: Many parts of Africa have witnessed reductions in Plasmodium falciparum transmission over the last 15 years. Since immunity to malaria is acquired more rapidly at higher transmission, the slower acquisition of immunity at lower transmission may partially offset the benefits of reductions in transmission. We examined the clinical spectrum of disease and predictors of mortality after sustained changes in transmission intensity, using data collected from 1989 to 2016. METHODS: We conducted a temporal observational analysis of 18,000 children, aged 14 days to 14 years old, who were admitted to Kilifi County Hospital, Kenya, from 1989 to 2016 with malaria. We describe the trends over time of the clinical and laboratory criteria for severe malaria and associated risk of mortality. RESULTS: During the time periods 1989-2003, 2004-2008, and 2009-2016, Kilifi County Hospital admitted averages of 657, 310, and 174 cases of severe malaria per year including averages of 48, 14, and 12 malaria-associated deaths per year, respectively. The median ages in years of children admitted with cerebral malaria, severe anaemia, and malaria-associated mortality were 3.0 (95% confidence interval (CI) 2.2-3.9), 1.1 (95% CI 0.9-1.4), and 1.1 (95% CI 0.3-2.2) in the year 1989, rising to 4.9 (95% CI 3.9-5.9), 3.8 (95% CI 2.5-7.1), and 5 (95% CI 3.3-6.3) in the year 2016. The ratio of children with cerebral malaria to severe anaemia rose from 1:2 before 2004 to 3:2 after 2009. Hyperparasitaemia was a risk factor for death after 2009 but not in earlier time periods. CONCLUSION: Despite the evidence of slower acquisition of immunity, continued reductions in the numbers of cases of severe malaria resulted in lower overall mortality. Our temporal data are limited to a single site, albeit potentially applicable to a secular trend present in many parts of Africa.
Assuntos
Malária Cerebral/epidemiologia , Pré-Escolar , Feminino , Humanos , Lactente , Quênia/epidemiologia , Malária Cerebral/patologia , Malária Falciparum/epidemiologia , Masculino , Estudos Observacionais como Assunto , Estudos Prospectivos , Fatores de RiscoRESUMO
Pterygium is a pathological proliferative condition of the ocular surface, characterised by formation of a highly vascularised, fibrous tissue arising from the limbus that invades the central cornea leading to visual disturbance and, if untreated, blindness. Whilst chronic ultraviolet (UV) light exposure plays a major role in its pathogenesis, higher susceptibility to pterygium is observed in some families, suggesting a genetic component. In this study, a Northern Irish family affected by pterygium but reporting little direct exposure to UV was identified carrying a missense variant in CRIM1 NM_016441.2: c.1235 Aâ¯>â¯C (H412P) through whole-exome sequencing and subsequent analysis. CRIM1 is expressed in the developing eye, adult cornea and conjunctiva, having a role in cell differentiation and migration but also in angiogenesis, all processes involved in pterygium formation. We demonstrate elevated CRIM1 expression in pterygium tissue from additional individual Northern Irish patients compared to unaffected conjunctival controls. UV irradiation of HCE-S cells resulted in an increase in ERK phosphorylation and CRIM1 expression, the latter further elevated by the addition of the MEK1/2 inhibitor, U0126. Conversely, siRNA knockdown of CRIM1 led to decreased UV-induced ERK phosphorylation and increased BCL2 expression. Transient expression of the mutant H412P CRIM1 in corneal epithelial HCE-S cells showed that, unlike wild-type CRIM1, it was unable to reduce the cell proliferation, increased ERK phosphorylation and apoptosis induced through a decrease of BCL2 expression levels. We propose here a series of intracellular events where CRIM1 regulation of the ERK pathway prevents UV-induced cell proliferation and may play an important role in the in the pathogenesis of pterygium.
Assuntos
Epitélio Corneano/efeitos da radiação , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Pterígio/genética , Raios Ultravioleta , Adulto , Western Blotting , Receptores de Proteínas Morfogenéticas Ósseas , Células Cultivadas , Epitélio Corneano/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Linhagem , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pterígio/etiologia , Pterígio/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento Completo do GenomaRESUMO
OBJECTIVE: Two similarly designed extension studies evaluated the long-term safety and tolerability of desvenlafaxine for the treatment of children and adolescents with major depressive disorder (MDD). Efficacy was evaluated as a secondary objective. METHODS: Both 6-month, open-label, flexible-dose extension studies enrolled children and adolescents who had completed one of two double-blind, placebo-controlled, lead-in studies. One lead-in study included a 1-week transition period prior to the extension study. Patients received 26-week treatment with flexible-dose desvenlafaxine (20-50 mg/d). Safety assessments included comprehensive psychiatric evaluations, vital sign assessments, laboratory evaluations, 12-lead electrocardiogram, physical examination with Tanner assessment, and Columbia-Suicide Severity Rating Scale. Adverse events (AEs) were collected throughout the studies. Efficacy was assessed using the Children's Depression Rating Scale-Revised (CDRS-R). RESULTS: A total of 552 patients enrolled (completion rates: 66.4 and 69.1%). AEs were reported by 79.4 and 79.1% of patients in the two studies; 8.9 and 5.2% discontinued due to AEs. Treatment-emergent suicidal ideation or behavior was reported for 16.6 and 14.1% of patients in the two studies. Mean (SD) CDRS-R total score decreased from 33.83 (11.93) and 30.92 (10.20) at the extension study baseline to 24.31 (7.48) and 24.92 (8.45), respectively, at week 26. CONCLUSION: Desvenlafaxine 20 to 50 mg/d was generally safe and well tolerated with no new safety signals identified in children and adolescents with MDD who received up to 6 months of treatment in these studies. Patients maintained the reduction in severity of depressive symptoms observed in all treatment groups at the end of the lead-in study.
Assuntos
Antidepressivos/efeitos adversos , Transtorno Depressivo Maior/tratamento farmacológico , Succinato de Desvenlafaxina/efeitos adversos , Efeitos Adversos de Longa Duração/epidemiologia , Adolescente , Antidepressivos/administração & dosagem , Antidepressivos/uso terapêutico , Criança , Succinato de Desvenlafaxina/administração & dosagem , Succinato de Desvenlafaxina/uso terapêutico , Tolerância a Medicamentos , Feminino , Humanos , Masculino , Resultado do TratamentoRESUMO
BACKGROUND: Behaviour change interventions targeting physical activity, diet, sleep and sedentary behaviour of teenagers show promise when delivered through smartphones. However, to date there is no evidence of effectiveness of multicomponent smartphone-based interventions. Utilising a user-centred design approach, we developed a theory-based, multi-dimensional system, PEGASO Fit For Future (PEGASO F4F), which exploits sophisticated game mechanics involving smartphone applications, a smartphone game and activity sensors to motivate teenagers to take an active role in adopting and maintaining a healthy lifestyle. This paper describes the study protocol to assess the feasibility, usability and effectiveness (knowledge/awareness and behavioural change in lifestyle) of the PEGASO system. METHODS: We are conducting a quasi-experimental controlled cluster trial in 4 sites in Spain, Italy, and UK (England, Scotland) over 6 months. We plan to recruit 525, in a 2:1 basis, teenagers aged 13-16 years from secondary schools. The intervention group is provided with the PEGASO system whereas the comparison group continues their usual educational routine. Outcomes include feasibility, acceptance, and usability of the PEGASO system as well as between and within group changes in motivation, self-reported diet, physical activity, sedentary and sleeping behaviour, anthropometric measures and knowledge about a healthy lifestyle. DISCUSSION: PEGASO F4F will provide evidence into the cross-cultural similarities and differences in the feasibility, acceptability and usability of a multi-dimensional smartphone based behaviour change intervention for teenagers. The study will explore facilitating factors, challenges and barriers of engaging teenagers to adapt and maintain a healthy lifestyle when using smartphone technology. Positive results from this ICT based multi component intervention may have significant implications both at clinical level, improving teenagers health and at public health level since it can present an influential tool against the development of chronic disease during adulthood. TRIAL REGISTRATION: https://clinicaltrials.gov Registration number: NCT02930148, registered 4 October 2016.
Assuntos
Comportamento do Adolescente , Comportamentos Relacionados com a Saúde , Promoção da Saúde/métodos , Aplicativos Móveis , Smartphone , Adolescente , Europa (Continente) , Feminino , Humanos , Masculino , Ensaios Clínicos Controlados não Aleatórios como AssuntoRESUMO
The paper contributes to contemporary understandings of vulnerability by expanding their scope with an understanding of vulnerability as generated through institutionalised practices. The argument draws on experiential accounts of navigating the practices of diagnosis by people living with multiple conditions of ill-health and disability. Vulnerability as a concept is used widely across different domains and conveys a multitude of meanings. Contemporary biomedicine, and its associated health systems and services, understands vulnerability mostly as inherent to particular physical and mental bodily conditions that put people at risk of ill-health or emotionally fragility. This may combine with a more epidemiological understanding of vulnerability as the experience of certain population groups subject to entrenched structural inequalities. Philosophers and feminists have argued that vulnerability is a universal experience of being human while political commentators have explored its potential as a resource for resistance and action. Diagnosis within medicine and psychiatry has been the subject of extensive social analysis, critique and activism. The paper draws on first-hand experiential accounts collected through face-to-face interviews with people living with multiple conditions about their experiences of diagnosis, mostly at the primary care level. We identify five aspects to diagnostic practice that are harmful and exacerbate the experience of vulnerability: temporal sequencing; diagnostic authority; medical specialisation; strategic symptom selection; medical isolation. However, these diagnostic practices are not best understood only in terms of the power asymmetries inherent to the medical consultation, but are embedded into the very institution of diagnosis. The paper thus proposes a combined approach to vulnerability that recognises it as a universal condition of humanity but one that becomes animated or amplified for some bodies, through their own inherent incapacities or the external structures of inequality, and through the practices of medicine as situated in particular times and places.
Assuntos
Múltiplas Afecções Crônicas/psicologia , Populações Vulneráveis/psicologia , Adulto , Feminino , Ciências Humanas , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes. An altered keratin expression profile was observed in the cornea of mutant mice, confirmed by western blot, RNA-seq and quantitative real-time polymerase chain reaction. Mass spectrometry (MS) and immunohistochemistry demonstrated a similarly altered keratin profile in corneal tissue from a K12-Leu132Pro MECD patient. The K12-Leu132Pro mutation results in cytoplasmic keratin aggregates. RNA-seq analysis revealed increased chaperone gene expression, and apoptotic unfolded protein response (UPR) markers, CHOP and Caspase 12, were also increased in the MECD mice. Corneal epithelial cell apoptosis was increased 17-fold in the mutant cornea, compared with the wild-type (P < 0.001). This elevation of UPR marker expression was also observed in the human MECD cornea. This is the first reporting of a mouse model for MECD that recapitulates the human disease and is a valuable resource in understanding the pathomechanism of the disease. Although the most severe phenotype is observed in the homozygous mice, this model will still provide a test-bed for therapies not only for corneal dystrophies but also for other keratinopathies caused by similar mutations.