Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Pain Headache Rep ; 28(6): 481-487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558164

RESUMO

PURPOSE OF REVIEW: Diabetic neuropathy is a debilitating complication of diabetes mellitus that affects millions of individuals worldwide. It is characterized by nerve damage resulting from prolonged exposure to high blood glucose levels. Diabetic neuropathy may cause a range of symptoms, including pain, numbness, muscle weakness, autonomic dysfunction, and foot ulcers, potentially causing significant impairment to the quality of life for those affected. This review article aims to provide a comprehensive overview of the pathophysiology of diabetic neuropathy. The etiology of diabetic neuropathy will be discussed, including risk factors, predisposing conditions, and an overview of the complex interplay between hyperglycemia, metabolic dysregulation, and nerve damage. Additionally, we will explore the molecular mechanisms and pathways of diabetic neuropathy, including the impact of hyperglycemia on nerve function, abnormalities in glucose metabolism, the role of advanced glycation end products (AGEs), and inflammatory and immune-mediated processes. We will provide an overview of the various nerve fibers affected by diabetic neuropathy and explore the common symptoms and complications associated with diabetic neuropathy in the pain medicine field. RECENT FINDINGS: This review highlights advances in understanding the pathophysiology of diabetic neuropathy as well as reviews potential novel therapeutic strategies and promising areas for future research. In conclusion, this review article aims to shed light on the pathophysiology of diabetic neuropathy, its far-reaching consequences, and the evolving strategies for prevention and management. In understanding the mechanisms of diabetic neuropathy and the ongoing research in this area, healthcare professionals can better serve patients with diabetes, ultimately improving well-being and reducing complications.


Assuntos
Neuropatias Diabéticas , Humanos , Neuropatias Diabéticas/fisiopatologia , Fatores de Risco , Hiperglicemia/fisiopatologia , Hiperglicemia/complicações
2.
Nat Commun ; 15(1): 1704, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402210

RESUMO

Outcome-guided behavior requires knowledge about the identity of future rewards. Previous work across species has shown that the dopaminergic midbrain responds to violations in expected reward identity and that the lateral orbitofrontal cortex (OFC) represents reward identity expectations. Here we used network-targeted transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) during a trans-reinforcer reversal learning task to test the hypothesis that outcome expectations in the lateral OFC contribute to the computation of identity prediction errors (iPE) in the midbrain. Network-targeted TMS aiming at lateral OFC reduced the global connectedness of the lateral OFC and impaired reward identity learning in the first block of trials. Critically, TMS disrupted neural representations of expected reward identity in the OFC and modulated iPE responses in the midbrain. These results support the idea that iPE signals in the dopaminergic midbrain are computed based on outcome expectations represented in the lateral OFC.


Assuntos
Mesencéfalo , Córtex Pré-Frontal , Córtex Pré-Frontal/fisiologia , Mesencéfalo/fisiologia , Recompensa , Reversão de Aprendizagem/fisiologia , Transdução de Sinais , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA