RESUMO
SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Feminino , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/complicações , Haploinsuficiência/genética , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , HumanosRESUMO
Common genetic variants identified in the general population have been found to increase phenotypic risks among individuals with certain genetic conditions. Up to 90% of individuals with tuberous sclerosis complex (TSC) are affected by some type of epilepsy, yet the common variants contributing to epilepsy risk in the general population have not been evaluated in the context of TSC-associated epilepsy. Such knowledge is important to help uncover the underlying pathogenesis of epilepsy in TSC which is not fully understood, and critical as uncontrolled epilepsy is a major problem in this population. To evaluate common genetic modifiers of epilepsy, our study pooled phenotypic and genotypic data from 369 individuals with TSC to evaluate known and novel epilepsy common variants. We did not find evidence of enhanced genetic penetrance for known epilepsy variants identified across the largest genome-wide association studies of epilepsy in the general population, but identified support for novel common epilepsy variants in the context of TSC. Specifically, we have identified a novel signal in SLC7A1 that may be functionally involved in pathways relevant to TSC and epilepsy. Our study highlights the need for further evaluation of genetic modifiers in TSC to aid in further understanding of epilepsy in TSC and improve outcomes.
Assuntos
Epilepsia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Esclerose Tuberosa , Humanos , Esclerose Tuberosa/genética , Esclerose Tuberosa/complicações , Epilepsia/genética , Epilepsia/epidemiologia , Feminino , Masculino , Adulto , Variação Genética , Genótipo , Adolescente , Fenótipo , Criança , Polimorfismo de Nucleotídeo Único , Pré-EscolarRESUMO
Disruptions in neural tube (NT) closure result in neural tube defects (NTDs). To understand the molecular processes required for mammalian NT closure, we investigated the role of Snx3, a sorting nexin gene. Snx3-/- mutant mouse embryos display a fully-penetrant cranial NTD. In vivo, we observed decreased canonical WNT target gene expression in the cranial neural epithelium of the Snx3-/- embryos and a defect in convergent extension of the neural epithelium. Snx3-/- cells show decreased WNT secretion, and live cell imaging reveals aberrant recycling of the WNT ligand-binding protein WLS and mis-trafficking to the lysosome for degradation. The importance of SNX3 in WNT signaling regulation is demonstrated by rescue of NT closure in Snx3-/- embryos with a WNT agonist. The potential for SNX3 to function in human neurulation is revealed by a point mutation identified in an NTD-affected individual that results in functionally impaired SNX3 that does not colocalize with WLS and the degradation of WLS in the lysosome. These data indicate that Snx3 is crucial for NT closure via its role in recycling WLS in order to control levels of WNT signaling.
Assuntos
Lisossomos/metabolismo , Defeitos do Tubo Neural/embriologia , Tubo Neural/embriologia , Receptores Acoplados a Proteínas G/metabolismo , Nexinas de Classificação/metabolismo , Via de Sinalização Wnt , Animais , Humanos , Lisossomos/genética , Lisossomos/patologia , Camundongos , Camundongos Knockout , Tubo Neural/patologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Receptores Acoplados a Proteínas G/genética , Nexinas de Classificação/genéticaRESUMO
Spina bifida (SB) is the second most common nonlethal congenital malformation. The existence of monogenic SB mouse models and human monogenic syndromes with SB features indicate that human SB may be caused by monogenic genes. We hypothesized that whole exome sequencing (WES) allows identification of potential candidate genes by (i) generating a list of 136 candidate genes for SB, and (ii) by unbiased exome-wide analysis. We generated a list of 136 potential candidate genes from three categories and evaluated WES data of 50 unrelated SB cases for likely deleterious variants in 136 potential candidate genes, and for potential SB candidate genes exome-wide. We identified 6 likely deleterious variants in 6 of the 136 potential SB candidate genes in 6 of the 50 SB cases, whereof 4 genes were derived from mouse models, 1 gene was derived from human nonsyndromic SB, and 1 gene was derived from candidate genes known to cause human syndromic SB. In addition, by unbiased exome-wide analysis, we identified 12 genes as potential candidates for SB. Identification of these 18 potential candidate genes in larger SB cohorts will help decide which ones can be considered as novel monogenic causes of human SB.
Assuntos
Exoma , Disrafismo Espinal , Animais , Modelos Animais de Doenças , Exoma/genética , Humanos , Camundongos , Disrafismo Espinal/genética , Sequenciamento do ExomaRESUMO
Tuberous Sclerosis Complex (TSC) is a multisystem autosomal dominant condition caused by inactivating pathogenic variants in either the TSC1 or the TSC2 gene, leading to hyperactivation of the mTOR pathway. Here, we present an update on the genetic and genomic aspects of TSC, with a focus on clinical and laboratory practice. We briefly summarize the structure of TSC1 and TSC2 as well as their protein products, and discuss current diagnostic testing, addressing mosaicism. We consider genotype-phenotype correlations as an example of precision medicine, and discuss genetic counseling in TSC, with the aim of providing geneticists and health care practitioners involved in the care of TSC individuals with useful tools for their practice.
Assuntos
Aconselhamento Genético , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Esclerose Tuberosa/etiologia , Estudos de Associação Genética , Testes Genéticos , Humanos , Mosaicismo , Mutação , Linhagem , Medicina de Precisão , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/genéticaRESUMO
Inactivating mutations of the TSC1/TSC2 complex (TSC1/2) cause tuberous sclerosis (TSC), a hereditary syndrome with neurological symptoms and benign hamartoma tumours in the brain. Since TSC effectors are largely unknown in the human brain, TSC patient cortical tubers were used to uncover hyperphosphorylation unique to TSC primary astrocytes, the cell type affected in the brain. We found abnormal hyperphosphorylation of catenin delta-1 S268, which was reversible by mTOR-specific inhibitors. In contrast, in three metastatic astrocytoma cell lines, S268 was under phosphorylated, suggesting S268 phosphorylation controls metastasis. TSC astrocytes appeared epithelial (i.e. tightly adherent, less motile, and epithelial (E)-cadherin positive), whereas wild-type astrocytes were mesenchymal (i.e. E-cadherin negative and highly motile). Despite their epithelial phenotype, TSC astrocytes outgrew contact inhibition, and monolayers sporadically generated tuberous foci, a phenotype blocked by the mTOR inhibitor, Torin1. Also, mTOR-regulated phosphokinase C epsilon (PKCe) activity induced phosphorylation of catenin delta-1 S268, which in turn mediated cell-cell adhesion in astrocytes. The mTOR-dependent, epithelial phenotype of TSC astrocytes suggests TSC1/2 and mTOR tune the phosphorylation level of catenin delta-1 by controlling PKCe activity, thereby regulating the mesenchymal-epithelial-transition (MET). Thus, some forms of TSC could be treated with PKCe inhibitors, while metastasis of astrocytomas might be blocked by PKCe stimulators.
Assuntos
Cateninas/genética , Hamartoma/genética , Proteína Quinase C-épsilon/genética , Serina-Treonina Quinases TOR/genética , Proteínas Supressoras de Tumor/genética , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibição de Contato/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Hamartoma/patologia , Humanos , Naftiridinas/administração & dosagem , Metástase Neoplásica , Fosforilação/efeitos dos fármacos , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , delta CateninaRESUMO
Neural tube defects (NTDs) occur secondary to failed closure of the neural tube between the third and fourth weeks of gestation. The worldwide incidence ranges from 0.3 to 200 per 10,000 births with the United States of American NTD incidence at around 3-6.3 per 10,000 dependent on race and socioeconomic background. Human NTD incidence has fallen by 35-50% in North America due to mandatory folic acid fortification of enriched cereal grain products since 1998. The US Food and Drug Administration has approved the folic acid fortification of corn masa flour with the goal to further reduce the incidence of NTDs, especially among individuals who are Hispanic. However, the genetic mechanisms determining who will benefit most from folate enrichment of the diet remains unclear despite volumes of literature published on studies of association of genes with functions related to folate metabolism and risk of human NTDs. The advances in omics technologies provides hypothesis-free tools to interrogate every single gene within the genome of NTD affected individuals to discover pathogenic variants and methylation targets throughout the affected genome. By identifying genes with expression regulated by presence of folate through transcriptome profiling studies, the genetic mechanisms leading to human NTDs due to folate deficiency may begin to be more efficiently revealed.
Assuntos
Deficiência de Ácido Fólico/epidemiologia , Ácido Fólico/genética , Defeitos do Tubo Neural/epidemiologia , Feminino , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/patologia , Humanos , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo , Tubo Neural/patologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Gravidez , Fatores Socioeconômicos , Estados UnidosRESUMO
The molecular mechanisms linking folate deficiency and neural tube defect (NTD) risk in offspring remain unclear. Folate transporters (SLC19A1, SLC46A1, SLC25A32, and FOLH1) and folate receptors (FOLR1, FOLR2, and FOLR3) are suggested to play essential roles in transporting folate from maternal intestinal lumen to the developing embryo. Loss of function variants in these genes may affect folate availability and contribute to NTD risk. This study examines whether variants within the folate transporter and receptor genes are associated with an increased risk for myelomeningocele (MM). Exons and their flanking intron sequences of 348 MM subjects were sequenced using the Sanger sequencing method and/or next generation sequencing to identify variants. Frequencies of alleles of single nucleotide polymorphisms (SNPs) in MM subjects were compared to those from ethnically matched reference populations to evaluate alleles' associated risk for MM. We identified eight novel variants in SLC19A1 and twelve novel variants in FOLR1, FOLR2, and FOLR3. Pathogenic variants include c.1265delG in SLC19A1 resulting in an early stop codon, four large insertion deletion variants in FOLR3, and a stop_gain variant in FOLR3. No new variants were identified in SLC46A1, SLC25A32, or FOLH1. In SLC19A1, c.80A>G (rs1051266) was not associated with our MM cohort; we did observe a variant allele G frequency of 61.7%, higher than previously reported in other NTD populations. In conclusion, we discovered novel loss of function variants in genes involved in folate transport in MM subjects. Our results support the growing evidence of associations between genes involved in folate transport and susceptibility to NTDs.
Assuntos
Proteínas de Transporte/genética , Receptor 1 de Folato/genética , Receptor 2 de Folato/genética , Meningomielocele/genética , Proteína Carregadora de Folato Reduzido/genética , Alelos , Éxons/genética , Feminino , Ácido Fólico/genética , Ácido Fólico/metabolismo , Predisposição Genética para Doença , Humanos , Masculino , Meningomielocele/fisiopatologia , Mutação , Defeitos do Tubo Neural/genética , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited disorder with variable expressivity associated with hamartomatous tumors, abnormalities of the skin, and neurologic problems including seizures, intellectual disability, and autism. TSC is caused by pathogenic variants in either TSC1 or TSC2. In general, TSC2 pathogenic variants are associated with a more severe phenotype than TSC1 pathogenic variants. Here, we report a pathogenic TSC2 variant, c.1864C>T, p.(Arg622Trp), associated with a mild phenotype, with most carriers meeting fewer than two major clinical diagnostic criteria for TSC. This finding has significant implications for counseling patients regarding prognosis. More patient data are required before changing the surveillance recommendations for patients with the reported variant. However, consideration should be given to tailoring surveillance recommendations for all pathogenic TSC1 and TSC2 variants with documented milder clinical sequelae. © 2017 Wiley Periodicals, Inc.
Assuntos
Alelos , Estudos de Associação Genética , Mutação , Fenótipo , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Substituição de Aminoácidos , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Linhagem , Rabdomioma/diagnóstico , Rabdomioma/genética , Rabdomioma/cirurgia , Índice de Gravidade de Doença , Proteína 2 do Complexo Esclerose TuberosaRESUMO
BACKGROUND: Neural tube defects (NTDs) are one of the most common congenital birth defects, with myelomeningocele (MM) being the most severe form compatible with life. Recent studies show a link between mitochondrial folate one carbon metabolism and NTDs by means of the glycine cleavage system (GCS). We hypothesize that single nucleotide polymorphisms and novel variants in the coding regions of the GCS genes increase the risk for MM. METHODS: DNA was obtained from 96 subjects with MM born before the United States mandated folic acid fortification of grains in 1998. Primers were designed for polymerase chain reaction amplification and sequencing of all exons in the AMT gene, one of four genes in the GCS, followed by identification of single nucleotide polymorphisms and novel variants. An additional 252 MM subjects underwent whole exome sequencing to examine all four GCS genes (aminomethyltransferase, glycine dehydrogenase, glycine cleavage system protein-H, and dihydrolipoamide dehydrogenase). RESULTS: We identified six novel, heterozygous variants in the AMT gene with three predicted to be deleterious to AMT function (p.Val7Leu, p.Pro251Arg, and p.Val380Met). Five extremely rare, known heterozygous variants were found in the AMT gene and one in the GLDC gene. No novel variants in the exons of the other two GCS genes (DLD and GCSH) were identified. CONCLUSION: We identified novel and rare, known variants in two of the four GCS genes that may contribute to the development of MM. Consistent with previous findings, the current study provides additional support that genetic variations in GCS genes contribute to the risk of NTDs. Birth Defects Research (Part A) 106:847-853, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Glicina , Meningomielocele , Feminino , Estudos de Associação Genética , Glicina/genética , Glicina/metabolismo , Humanos , Masculino , Meningomielocele/genética , Meningomielocele/metabolismoRESUMO
Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development.
Assuntos
Polaridade Celular , Variações do Número de Cópias de DNA , Glipicanas/genética , Disrafismo Espinal/genética , Animais , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Hispânico ou Latino/genética , Humanos , Masculino , Tubo Neural/embriologia , Tubo Neural/metabolismo , Disrafismo Espinal/embriologia , Disrafismo Espinal/fisiopatologia , População Branca/genética , Peixe-ZebraRESUMO
BACKGROUND: Neural tube defects (NTDs) remain the second most common cause of congenital malformations. Myelomeningocele (MM), the most common NTD compatible with survival, results from genetic and environmental factors. Epidemiologic studies and murine models support the hypotheses that obesity, diabetes and hyperglycemia confer increased risk of NTDs. Presence of wild-type facilitated glucose transporter, Glut2, in mouse embryos has been shown to increase risk for NTDs in hyperglycemic pregnancy. METHODS: The GLUT2 gene of 96 MM patients was amplified, sequenced and compared with the reference sequence (NM_000340). Variants previously unreported in the single nucleotide polymorphisms (SNP) database were considered novel. Allele frequencies of reported SNPs were compared with reference populations using Fisher's exact test. RESULTS: Analysis revealed three novel variants: a substitution in the core promoter region (c.-331c>t), a substitution (c.-182g>a) in the 5'-untranslated region, and a single base pair deletion (c.1441delT) in the coding sequences. Polymorphic alleles for 10 SNPs were also identified. Seven SNPs are significantly associated with MM in the Mexican American patients tested (p < 0.05) and two of the seven remained significant after Bonferroni correction. CONCLUSION: We identified three novel variants and seven SNPs associated with MM. The novel variants in the core promoter and in the 5'-untranslated region could affect GLUT2 mRNA transcription and stability and translation efficiency. The c.1441delT variant is predicted to alter the reading frame and prematurely terminate translation of the GLUT2 protein at the C-terminus, affecting GLUT2 protein function. Presence of GLUT2 variants may disrupt GLUT2 activity and influence MM susceptibility.
Assuntos
Transportador de Glucose Tipo 2/genética , Meningomielocele/genética , Americanos Mexicanos/genética , Polimorfismo de Nucleotídeo Único/genética , Sequência de Bases , Frequência do Gene , Estudos de Associação Genética , Humanos , Los Angeles , Dados de Sequência Molecular , Ontário , Análise de Sequência de DNA , TexasRESUMO
OBJECTIVE: Our objectives were to examine the extent of described sequence variation in the glucose transporter 3 (GLUT3) gene in children with myelomeningocele (MM), identify novel variations in the GLUT3 gene in these children, and determine whether these variations may confer a risk of MM. STUDY DESIGN: We sequenced the 10 exons of GLUT3, including exon-intron boundaries, on 96 children with MM. Sequencing was performed with Sanger methods and results analyzed with deoxyribonucleic acid analysis software. Frequencies of known single-nucleotide polymorphisms were identified, and those differing from the reference sequence (GRCh37/hg19 assembly) were considered variations. RESULTS: Six novel and 9 previously described, genetic variations were identified in our population. The novel variations included a large, 83 base pair deletion involving the core promoter region and part of exon 1 (1 of 96 children), and a 2 base pair deletion in the coding sequence of exon 4 (1 of 96 children). The remaining novel variations were located in the introns in the proximity of the splice sites. Novel mutations in GLUT3 were observed among 6.25% of our population. Additionally, the frequency of the rare allele for rs17847972 located in a splice donor site is higher (P < .001) in MM in our population than expected. CONCLUSION: We identified previously undescribed deletions and single-nucleotide variations involving the GLUT3 gene that may be associated with increased susceptibility to MM. Of particular interest, the 2 deletions involve both an important core promoter site and a coding region predicted to have a deleterious effect. The functional significance of these findings is under investigation.
Assuntos
Transportador de Glucose Tipo 3/genética , Meningomielocele/genética , Polimorfismo de Nucleotídeo Único , Éxons , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , HumanosRESUMO
Importance: The binary classification of spina bifida lesions as myelomeningocele (with sac) or myeloschisis (without sac) belies a spectrum of morphologies, which have not been correlated to clinical characteristics and outcomes. Objective: To characterize spina bifida lesion types and correlate them with preoperative presentation and postoperative outcomes. Design: Secondary analysis of images and videos obtained during fetoscopic spina bifida repair surgery from 2020-2023. Setting: Fetal surgery was performed at a quaternary care center. Participants: A prospective cohort of patients referred for fetal spina bifida underwent fetoscopic repair under an FDA-approved protocol. Of 60 lesions repaired, 57 had available images and were included in the analysis. Interventions or Exposures: We evaluated lesion morphology on high-resolution intraoperative images and videos to categorize lesions based on placode exposure and nerve root stretching. Main Outcomes and Measures: The reproducibility of the lesion classification was assessed via Kappa interrater agreement. Preoperative characteristics analyzed include ventricle size, tonsillar herniation level, lower extremities movement, and lesion dimensions. Outcomes included surgical time, need for patch for skin closure, gestational age at delivery, preterm premature rupture of membranes (PPROM), and neonatal cerebrospinal fluid (CSF) diversion. Results: We distinguished five lesion types that differ across a range of sac sizes, nerve root stretching, and placode exposure, with 93% agreement between examiners (p<0.001). Fetal characteristics at preoperative evaluation differed significantly by lesion type, including lesion volume (p<0.001), largest ventricle size (p=0.008), tonsillar herniation (p=0.005), and head circumference (p=0.03). Lesion level, talipes, and lower extremities movement did not differ by type. Surgical and perinatal outcomes differed by lesion type, including need for patch skin closure (p<0.001), gestational age at delivery (p=0.01), and NICU length of stay (p<0.001). PPROM, CSF leakage at birth, and CSF diversion in the NICU did not differ between lesion groups. Linear regression associated severity of ventriculomegaly with lesion type, but not with tonsillar herniation level. Conclusions and Relevance: There is a distinct phenotypic spectrum in open spina bifida with differential baseline presentation and outcomes. Severity of ventriculomegaly is associated with lesion type, rather than tonsillar herniation level. Our findings expand the classification of spina bifida to reveal a spectrum that warrants further study.
RESUMO
BACKGROUND: Neural tube defects (NTDs) are caused by genetic and environmental factors. ARMC5 is part of a novel ubiquitin ligase specific for POLR2A, the largest subunit of RNA polymerase II (Pol II). RESULTS: We find that ARMC5 knockout mice have increased incidence of NTDs, such as spina bifida and exencephaly. Surprisingly, the absence of ARMC5 causes the accumulation of not only POLR2A but also most of the other 11 Pol II subunits, indicating that the degradation of the whole Pol II complex is compromised. The enlarged Pol II pool does not lead to generalized Pol II stalling or a generalized decrease in mRNA transcription. In neural progenitor cells, ARMC5 knockout only dysregulates 106 genes, some of which are known to be involved in neural tube development. FOLH1, critical in folate uptake and hence neural tube development, is downregulated in the knockout intestine. We also identify nine deleterious mutations in the ARMC5 gene in 511 patients with myelomeningocele, a severe form of spina bifida. These mutations impair the interaction between ARMC5 and Pol II and reduce Pol II ubiquitination. CONCLUSIONS: Mutations in ARMC5 increase the risk of NTDs in mice and humans. ARMC5 is part of an E3 controlling the degradation of all 12 subunits of Pol II under physiological conditions. The Pol II pool size might have effects on NTD pathogenesis, and some of the effects might be via the downregulation of FOLH1. Additional mechanistic work is needed to establish the causal effect of the findings on NTD pathogenesis.
Assuntos
Proteínas do Domínio Armadillo , Defeitos do Tubo Neural , Disrafismo Espinal , Animais , Humanos , Camundongos , Proteínas do Domínio Armadillo/genética , Ácido Fólico/metabolismo , Camundongos Knockout , Mutação , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/epidemiologia , Disrafismo Espinal/genéticaRESUMO
BACKGROUND: Children with tuberous sclerosis complex (TSC) are at high risk for drug-resistant epilepsy (DRE). The ability to stratify those at highest risk for DRE is important for counseling and prompt, aggressive management, necessary to optimize neurocognitive outcomes. Using the extensively phenotyped PREVeNT cohort, we aimed to characterize whether the TSC genotype was associated with DRE. METHODS: The study group (N = 70) comprised participants with TSC enrolled at age less than or equal to six months with detailed epilepsy and other phenotypic and genotypic data, prospectively collected as part of the PREVeNT trial. Genotype-phenotype correlations of DRE, time to first abnormal electroencephalography, and time to epilepsy onset were compared using Fisher exact test and regression models. RESULTS: Presence of a TSC2 pathogenic variant was significantly associated with DRE, compared with TSC1 and participants with no pathogenic mutation identified. In fact, all participants with DRE had a TSC2 pathogenic variant. Furthermore, TSC2 variants expected to result in no protein product were associated with higher risk for DRE. Finally, TSC1 pathogenic variants were associated with later-onset epilepsy, on average 21.2 months later than those with other genotypes. CONCLUSIONS: Using a comprehensively phenotyped cohort followed from infancy, this study is the first to delineate genotype-phenotype correlations for epilepsy severity and onset in children with TSC. Patients with TSC2 pathogenic variants, especially TSC2 pathogenic variants predicted to result in lack of TSC2 protein, are at highest risk for DRE, and are likely to have earlier epilepsy onset than those with TSC1. Clinically, these insights can inform counseling, surveillance, and management.
Assuntos
Epilepsia Resistente a Medicamentos , Genótipo , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa , Humanos , Esclerose Tuberosa/genética , Esclerose Tuberosa/complicações , Proteína 2 do Complexo Esclerose Tuberosa/genética , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/etiologia , Masculino , Feminino , Lactente , Proteína 1 do Complexo Esclerose Tuberosa/genética , Estudos de Associação Genética , VigabatrinaRESUMO
Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 22 , Meningomielocele , Animais , Feminino , Humanos , Masculino , Camundongos , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/genética , Sequenciamento do Exoma , Ácido Fólico/administração & dosagem , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/genética , Meningomielocele/epidemiologia , Meningomielocele/genética , Penetrância , Disrafismo Espinal/genética , Risco , Proteínas Adaptadoras de Transdução de Sinal/genéticaRESUMO
OBJECTIVE: Excessive oxidative stress has been demonstrated as a mechanism for neural tube defects (NTDs). The current exploratory study sought to examine sequence variations in the superoxide dismutase 1 (SOD1) and 2 (SOD2) genes in patients with myelomeningocele and to identify variants altering risk for myelomeningocele. STUDY DESIGN: We sequenced deoxyribonucleic acid from 96 patients with myelomeningocele. The 11 exons were amplified by polymerase chain reaction, and the products were sequenced with the Sanger method. Results were compared with reference sequences (NM_000454, NM_000636, and NM_001024466) obtained from University of California Santa Cruz Genome Browser. Observed alleles that differed from the reference sequences were considered novel variants. RESULTS: We found 1 novel variant and 1 variant only recently described in phase 1 of the 1000 Genomes Project but not yet validated. The novel variant is located in the 3'-untranslated region (UTR) of SOD2 and is present in 2 of 96 patients (1.0% allele frequency). The other variant is located in the 3'-UTR of SOD1 and is present in 2 of 96 patients (1.0% allele frequency). Minor allele frequencies of known single nucleotide polymorphisms were compared with unaffected population controls. CONCLUSION: We identified 1 novel variant and made the second report of an additional variant in the SOD genes studied. The variant located in the 3'-UTR of SOD1 is predicted to alter microribonucleic acid (miRNA) binding. The variant located in the 3'-UTR of SOD2 is predicted to alter 2 miRNA binding sites and potentially affects messenger ribonucleic acid production. We also identified 2 known single-nucleotide polymorphisms that occur in significantly different frequency compared with the unaffected population controls.
Assuntos
Meningomielocele/genética , Superóxido Dismutase/genética , Regiões 3' não Traduzidas , Estudos de Casos e Controles , Criança , Estudos de Coortes , Frequência do Gene , Predisposição Genética para Doença , Humanos , Americanos Mexicanos/genética , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase-1 , População Branca/genéticaRESUMO
BACKGROUND: malnutrition is an important risk factor for poor outcome in patients recovering after hip fracture surgery. This study aimed to investigate the clinical, nutritional and rehabilitation effects of an oral nutritional supplementation (ONS) in an inpatient rehabilitation setting. METHODS: this was an observer-blinded randomised controlled trial of elderly post-surgical proximal femoral fracture patients. A ready-to-use oral liquid nutritional supplementation (18-24 g protein and 500 kcal per day) in addition to hospital diet was compared with hospital diet only. Both groups received usual rehabilitation therapy and oral calcium and vitamin D supplements. Outcomes were compared at discharge from rehabilitation and after 4 weeks of discharge. The primary outcome parameters were the serum albumin level, the body mass index (BMI), the functional independence measure (FIM) and the elderly mobility scale (EMS). Secondary outcome parameters were frequency of complications, inpatient length of stay, mortality and acute hospital use within 6 months after discharge. RESULTS: a total of 126 patients were recruited, 65 in the supplementation arm and 61 in the control arm. There was a significant difference in change in BMI with a decrease of 0.25 and 0.03 kg/m(2) in the ONS group and 0.72 and 0.49 kg/m(2) in the control group at hospital discharge and follow-up, respectively (P = 0.012). The length of stay in rehabilitation ward was shortened by 3.80 (SE = 1.81, P = 0.04) days favouring the ONS group. The total number of infection episodes was also reduced significantly. No difference was observed in the rate of change of the serum albumin level, the FIM and the EMS. CONCLUSION: clinical and nutritional benefits were seen in this trial but rehabilitation benefits could not be demonstrated.
Assuntos
Índice de Massa Corporal , Proteínas Alimentares/uso terapêutico , Suplementos Nutricionais , Fraturas do Quadril/dietoterapia , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Ingestão de Energia , Feminino , Seguimentos , Fraturas do Quadril/complicações , Fraturas do Quadril/mortalidade , Fraturas do Quadril/reabilitação , Humanos , Pacientes Internados , Fator de Crescimento Insulin-Like I/análise , Tempo de Internação , Masculino , Albumina Sérica/análise , Método Simples-CegoRESUMO
INTRODUCTION: Technological advances in genetic testing, particularly the adoption of noninvasive prenatal screening (NIPS) for single gene disorders such as tuberous sclerosis complex (TSC, OMIM# 613254), mean that putative/possible pathogenetic DNA variants can be identified prior to the appearance of a disease phenotype. Without a phenotype, accurate prediction of variant pathogenicity is crucial. Here, we report a TSC2 frameshift variant, NM_000548.5(TSC2):c.4255_4256delCA, predicted to result in nonsense-mediated mRNA decay (NMD) and cessation of TSC2 protein production and thus pathogenic according to ACMG criteria, identified by NIPS and subsequently detected in family members with few or no symptoms of TSC. Due to the lack of TSC-associated features in the family, we hypothesized that the deletion created a non-canonical 5' donor site resulting in cryptic splicing and a transcript encoding active TSC2 protein. Verifying the predicted effect of the variant was key to designating pathogenicity in this case and should be considered for other frameshift variants in other genetic disorders. METHODS: Phenotypic information on the family members was collected via review of the medical records and patient reports. RNA studies were performed using proband mRNA isolated from blood lymphocytes for RT-PCR and Sanger sequencing. Functional studies were performed by transient expression of the TSC2 variant proteins in cultured cells, followed by immunoblotting. RESULTS: No family members harboring the variant met any major clinical diagnostic criteria for TSC, though a few minor features non-specific to TSC were present. RNA studies supported the hypothesis that the variant caused cryptic splicing, resulting in an mRNA transcript with an in-frame deletion of 93 base pairs r.[4255_4256del, 4251_4343del], p.[(Gln1419Valfs*104), (Gln1419_Ser1449del)]. Expression studies demonstrated that the canonical function of the resulting truncated TSC2 p.Gln1419_Ser1449del protein product was maintained and similar to wildtype. CONCLUSION: Although most frameshift variants are likely to result in NMD, the NM_000548.5(TSC2):c.4255_4256delCA variant creates a cryptic 5' splice donor site, resulting in an in-frame deletion that retains TSC2 function, explaining why carriers of the variant do not have typical features of TSC. The information is important for this family and others with the same variant. Equally important is the lesson that predictions can be inaccurate, and that caution should be used when designating frameshift variants as pathogenic, especially when phenotypic information to corroborate testing results is unavailable. Our work demonstrates that functional RNA- and protein-based confirmation of the effects of DNA variants improves molecular genetic diagnostics.