Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 628(8007): 299-305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438066

RESUMO

Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.

2.
Anal Chem ; 95(16): 6568-6576, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027489

RESUMO

Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated chemical classified as a persistent organic pollutant. PFOA has been linked to many toxic effects, including liver injury. Many studies report that PFOA exposure alters serum and hepatic lipid metabolism. However, lipidomic pathways altered by PFOA exposure are largely unknown and only a few lipid classes, mostly triacylglycerol (TG), are usually considered in lipid analysis. Here, we performed a global lipidomic analysis on the liver of PFOA-exposed (high-dose and short-duration) and control mice by combining three mass spectrometry (MS) techniques: liquid chromatography with tandem mass spectrometry (LC-MS/MS), matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Among all hepatic lipids identified by LC-MS/MS analysis, more than 350 were statistically impacted (increased or decreased levels) after PFOA exposure, as confirmed by multi-variate data analysis. The levels of many lipid species from different lipid classes, most notably phosphatidylethanolamine (PE), phosphatidylcholine (PC), and TG, were significantly altered. Subsequent lipidomic analysis highlights the pathways significantly impacted by PFOA exposure, with the glycerophospholipid metabolism being the most impacted, and the changes in the lipidome network, which connects all the lipid species together. MALDI-MSI displays the heterogeneous distribution of the affected lipids and PFOA, revealing different areas of lipid expression linked to PFOA localization. TOF-SIMS localizes PFOA at the cellular level, supporting MALDI-MSI results. This multi-modal MS analysis unveils the lipidomic impact of PFOA in the mouse liver after high-dose and short-term exposure and opens new opportunities in toxicology.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Camundongos , Animais , Cromatografia Líquida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Caprilatos , Triglicerídeos , Fígado
3.
Anal Chem ; 94(30): 10754-10763, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35862487

RESUMO

The structural, morphological, and chemical characterization of samples is of utmost importance for a large number of scientific fields. Furthermore, this characterization very often needs to be performed in three dimensions and at length scales down to the nanometer. Therefore, there is a stringent necessity to develop appropriate instrumentational solutions to fulfill these needs. Here we report on the deployment of magnetic sector secondary ion mass spectrometry (SIMS) on a type of instrument widely used for such nanoscale investigations, namely, focused ion beam (FIB)-scanning electron microscopy (SEM) instruments. First, we present the layout of the FIB-SEM-SIMS instrument and address its performance by using specific test samples. The achieved performance can be summarized as follows: an overall secondary ion beam transmission above 40%, a mass resolving power (M/ΔM) of more than 400, a detectable mass range from 1 to 400 amu, a lateral resolution in two-dimensional (2D) chemical imaging mode of 15 nm, and a depth resolution of ∼4 nm at 3.0 keV of beam landing energy. Second, we show results (depth profiling, 2D imaging, three-dimensional imaging) obtained in a wide range of areas, such as battery research, photovoltaics, multilayered samples, and life science applications. We hereby highlight the system's versatile capability of conducting high-performance correlative studies in the fields of materials science and life sciences.


Assuntos
Imageamento Tridimensional , Espectrometria de Massa de Íon Secundário , Imageamento Tridimensional/métodos , Fenômenos Magnéticos , Microscopia Eletrônica de Varredura
4.
Rep Prog Phys ; 84(10)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34404033

RESUMO

This paper is a review on the combination between Helium Ion Microscopy (HIM) and Secondary Ion Mass Spectrometry (SIMS), which is a recently developed technique that is of particular relevance in the context of the quest for high-resolution high-sensitivity nano-analytical solutions. We start by giving an overview on the HIM-SIMS concept and the underlying fundamental principles of both HIM and SIMS. We then present and discuss instrumental aspects of the HIM and SIMS techniques, highlighting the advantage of the integrated HIM-SIMS instrument. We give an overview on the performance characteristics of the HIM-SIMS technique, which is capable of producing elemental SIMS maps with lateral resolution below 20 nm, approaching the physical resolution limits, while maintaining a sub-nanometric resolution in the secondary electron microscopy mode. In addition, we showcase different strategies and methods allowing to take profit of both capabilities of the HIM-SIMS instrument (high-resolution imaging using secondary electrons and mass filtered secondary sons) in a correlative approach. Since its development HIM-SIMS has been successfully applied to a large variety of scientific and technological topics. Here, we will present and summarise recent applications of nanoscale imaging in materials research, life sciences and geology.


Assuntos
Hélio , Espectrometria de Massa de Íon Secundário , Testes Diagnósticos de Rotina , Microscopia Eletrônica
5.
Environ Sci Technol ; 55(13): 9384-9393, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165287

RESUMO

The development of high-resolution microscopy and spectroscopy techniques has allowed the analysis of microscopic 3D objects in fields like nanotechnology and life and soil sciences. Soils have the ability to incorporate and store large amounts of organic carbon. To study this organic matter (OM) sequestration, it is essential to analyze its association with soil minerals at the relevant microaggregate scale. This has been previously studied in 2D. However, 3D surface representations would allow a variable angle and magnification analysis, providing detailed insight on their architecture. Here we illustrate a 4D surface reconstruction workflow able to locate preferential sites for OM deposition with respect to microaggregate topography. We used Helium Ion Microscopy to acquire overlapping Secondary Electron (SE) images to reconstruct the soil topography in 3D. Then we used nanoscale Secondary Ion Mass Spectrometry imaging to chemically differentiate between the OM and mineral constituents forming the microaggregates. This image was projected onto the 3D SE model to create a 4D surface reconstruction. Our results show that organo-mineral associations mainly form at medium curvatures while flat and highly curved surfaces are avoided. This method presents an important step forward to survey the 3D physical structure and chemical composition of microscale biogeochemical systems correlatively.


Assuntos
Minerais , Solo , Carbono , Análise Espectral
6.
Nanotechnology ; 31(13): 135604, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31825900

RESUMO

ZnO nanobelts may grow with their polar axis perpendicular to growth direction. Heterostructured nanobelts therefore contain hetero-interfaces along the polar axis of ZnO where polarisation mismatch may induce electron confinement. These interfaces run along the length of the nanobelts. Such heterostructure nanobelts are grown by molecular beam epitaxy and TEM images confirm the core-shell structure. The effects of shell-growth temperature on nano-heterostructures is investigated using photoluminescence and secondary ion mass spectrometry in a focussed ion-beam microscope with Ne+ as the primary ion beam. We perform low temperature photoluminescence on ensembles of such heterostructures and single nanostructures. We show how single nanobelts have photoluminescence spectra rich in features and attribute these to band misalignment at ZnO/ZnMgO interfaces embedded within nano-heterostructures.

7.
Part Fibre Toxicol ; 16(1): 14, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940208

RESUMO

BACKGROUND: The present study aimed to evaluate the potential differences in the biological effects of two types of spherical silver particles of 20 and 200 nm (Ag20 and Ag200), and of PVP-coated silver nanowires (AgNWs) with a diameter of 50 nm and length up to 50 µm, using a complex 3D model representative for the alveolar barrier cultured at air-liquid interface (ALI). The alveolar model was exposed to 0.05, 0.5 and 5 µg/cm2 of test compounds at ALI using a state-of-the-art exposure system (Vitrocell™Cloud System). Endpoints related to the oxidative stress induction, anti-oxidant defence mechanisms, pro-inflammatory responses and cellular death were selected to evaluate the biocompatibility of silver particles and nanowires (AgNMs) and to further ascribe particular biological effects to the different morphologic properties between the three types of AgNMs evaluated. RESULTS: Significant cytotoxic effect was observed for all three types of AgNMs at the highest tested doses. The increased mRNA levels of the pro-apoptotic gene CASP7 suggests that apoptosis may occur after exposure to AgNWs. All three types of AgNMs increased the mRNA level of the anti-oxidant enzyme HMOX-1 and of the metal-binding anti-oxidant metallothioneins (MTs), with AgNWs being the most potent inducer. Even though all types of AgNMs induced the nuclear translocation of NF-kB, only AgNWs increased the mRNA level of pro-inflammatory mediators. The pro-inflammatory response elicited by AgNWs was further confirmed by the increased secretion of the 10 evaluated interleukins. CONCLUSION: In the current study, we demonstrated that the direct exposure of a complex tetra-culture alveolar model to different types of AgNMs at ALI induces shape- and size-specific biological responses. From the three AgNMs tested, AgNWs were the most potent in inducing biological alterations. Starting from 50 ng/cm2, a dose representative for an acute exposure in a high exposure occupational setting, AgNWs induced prominent changes indicative for a pro-inflammatory response. Even though the acute responses towards a dose representative for a full-lifetime exposure were also evaluated, chronic exposure scenarios at low dose are still unquestionably needed to reveal the human health impact of AgNMs during realistic conditions.


Assuntos
Barreira Alveolocapilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Nanofios/toxicidade , Alvéolos Pulmonares/efeitos dos fármacos , Prata/toxicidade , Poluentes Atmosféricos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Relação Dose-Resposta a Droga , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Tamanho da Partícula , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo
8.
Anal Chem ; 89(20): 10702-10710, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28901122

RESUMO

Correlative microscopy combining various imaging modalities offers powerful insights into obtaining a comprehensive understanding of physical, chemical, and biological phenomena. In this article, we investigate two approaches for image fusion in the context of combining the inherently lower-resolution chemical images obtained using secondary ion mass spectrometry (SIMS) with the high-resolution ultrastructural images obtained using electron microscopy (EM). We evaluate the image fusion methods with three different case studies selected to broadly represent the typical samples in life science research: (i) histology (unlabeled tissue), (ii) nanotoxicology, and (iii) metabolism (isotopically labeled tissue). We show that the intensity-hue-saturation fusion method often applied for EM-sharpening can result in serious image artifacts, especially in cases where different contrast mechanisms interplay. Here, we introduce and demonstrate Laplacian pyramid fusion as a powerful and more robust alternative method for image fusion. Both physical and technical aspects of correlative image overlay and image fusion specific to SIMS-based correlative microscopy are discussed in detail alongside the advantages, limitations, and the potential artifacts. Quantitative metrics to evaluate the results of image fusion are also discussed.

9.
J Am Chem Soc ; 138(49): 15821-15824, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960332

RESUMO

Compositional engineering of a mixed cation/mixed halide perovskite in the form of (FAPbI3)0.85(MAPbBr3)0.15 is one of the most effective strategies to obtain record-efficiency perovskite solar cells. However, the perovskite self-organization upon crystallization and the final elemental distribution, which are paramount for device optimization, are still poorly understood. Here we map the nanoscale charge carrier and elemental distribution of mixed perovskite films yielding 20% efficient devices. Combining a novel in-house-developed high-resolution helium ion microscope coupled with a secondary ion mass spectrometer (HIM-SIMS) with Kelvin probe force microscopy (KPFM), we demonstrate that part of the mixed perovskite film intrinsically segregates into iodide-rich perovskite nanodomains on a length scale of up to a few hundred nanometers. Thus, the homogeneity of the film is disrupted, leading to a variation in the optical properties at the micrometer scale. Our results provide unprecedented understanding of the nanoscale perovskite composition.

10.
J Neurochem ; 138(2): 339-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27121280

RESUMO

Neuromelanin (NM) is a compound which highly accumulates mainly in catecholamine neurons of the substantia nigra (SN), and is contained in organelles (NM-containing organelles) with lipid bodies and proteins. These neurons selectively degenerate in Parkinson's disease and NM can play either a protective or toxic role. NM-containing organelles of SN were investigated by Analytical Electron Microscopy (AEM) and Nano-Secondary Ion Mass Spectrometry (NanoSIMS) within human tissue sections with respect to ultrastructure and elemental composition. Within the NM-containing organelle, the single NM granules and lipid bodies had sizes of about 200-600 nm. Energy-Dispersive X-ray microanalysis spectra of the NM granules and lipid bodies were acquired with 100 nm beam diameter in AEM, NanoSIMS yielded elemental maps with a lateral resolution of about 150 nm. AEM yielded the quantitative elemental composition of NM granules and bound metals, e.g., iron with a mole fraction of about 0.15 atomic percent. Chemical analyses by AEM and NanoSIMS were consistent at the subcellular level so that nanoSIMS measurements have been quantitated. In NM granules of SN from healthy subjects, a significant amount of S, Fe, and Cu was found. In lipid bodies an amount of P consistent with the presence of phospholipids was measured. The improved detection limits of nanoSIMS offer new possibilities for chemical mapping, high-sensitivity trace element detection, and reduced acquisition times. Variations between individual NM granules can now be investigated effectively and quantitatively by NanoSIMS mapping Cu and Fe. This should yield new insight into the changes in chemical composition of NM pigments during healthy aging and disease. Neuromelanin-containing organelles of dopamine neurons in normal human substantia nigra were investigated by analytical electron mircoscopy and secondary ion mass spectroscopy (NanoSIMS) yielding the ultrastructure and elemental composition. In neuromelanin granules a significant amount of S, Fe and Cu was found. In lipid bodies an amount of P consistent with the presence of phospholipids was measured. The improved sensitivity of NanoSIMS shows differences in chemical composition between individual neuromelanin granules and allows to study chemical changes of neuromelanin organelles during aging and disease.


Assuntos
Melaninas/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Idoso , Idoso de 80 Anos ou mais , Grânulos Citoplasmáticos/metabolismo , Microanálise por Sonda Eletrônica/métodos , Feminino , Humanos , Masculino , Microscopia Eletrônica de Transmissão/métodos , Doença de Parkinson/patologia , Espectrometria de Massa de Íon Secundário/métodos , Substância Negra/ultraestrutura
11.
Plant Cell Physiol ; 57(2): 407-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26865661

RESUMO

Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity.


Assuntos
Cobre/farmacologia , Medicago sativa/metabolismo , Metabolômica/métodos , Caules de Planta/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Análise por Conglomerados , Meios de Cultura/farmacologia , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago sativa/efeitos dos fármacos , Medicago sativa/crescimento & desenvolvimento , Minerais , Nanotecnologia , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Análise de Componente Principal , Proteoma/metabolismo , Espectrometria de Massa de Íon Secundário
12.
Part Fibre Toxicol ; 13: 9, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888332

RESUMO

BACKGROUND: The increased incorporation of silver nanoparticles (Ag NPs) into consumer products makes the characterization of potential risk for humans and other organisms essential. The oral route is an important uptake route for NPs, therefore the study of the gastrointestinal tract in respect to NP uptake and toxicity is very timely. The aim of the present study was to evaluate the effects of Ag NPs and ions on a Caco-2/TC7:HT29-MTX intestinal co-culture model with mucus secretion, which constitutes an important protective barrier to exogenous agents in vivo and may strongly influence particle uptake. METHODS: The presence of the mucus layer was confirmed with staining techniques (alcian blue and toluidine blue). Mono and co-cultures of Caco-2/TC7 and HT29-MTX cells were exposed to Ag NPs (Ag 20 and 200 nm) and AgNO3 and viability (alamar blue), ROS induction (DCFH-DA assay) and IL-8 release (ELISA) were measured. The particle agglomeration in the media was evaluated with DLS and the ion release with ultrafiltration and ICP-MS. The effects of the Ag NPs and AgNO3 on cells in co-culture were studied at a proteome level with two-dimensional difference in gel electrophoresis (2D-DIGE) followed by Matrix Assisted Laser Desorption Ionization - Time Of Flight/ Time Of Flight (MALDI-TOF/TOF) mass spectrometry (MS). Intracellular localization was assessed with NanoSIMS and TEM. RESULTS: The presence of mucus layer led to protection against ROS and decrease in IL-8 release. Both Ag 20 and 200 nm NPs were taken up by the cells and Ag NPs 20 nm were mainly localized in organelles with high sulfur content. A dose- and size-dependent increase in IL-8 release was observed with a lack of cytotoxicity and oxidative stress. Sixty one differentially abundant proteins were identified involved in cytoskeleton arrangement and cell cycle, oxidative stress, apoptosis, metabolism/detoxification and stress. CONCLUSIONS: The presence of mucus layer had an impact on modulating the induced toxicity of NPs. NP-specific effects were observed for uptake, pro-inflammatory response and changes at the proteome level. The low level of overlap between differentially abundant proteins observed in both Ag NPs and AgNO3 treated co-culture suggests size-dependent responses that cannot only be attributed to soluble Ag.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Muco/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Nitrato de Prata/toxicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
J Nanobiotechnology ; 14: 22, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27001369

RESUMO

BACKGROUND: Interactions between nanoparticles and cells are now the focus of a fast-growing area of research. Though many nanoparticles interact with cells without any acute toxic responses, metal oxide nanoparticles including those composed of titanium dioxide (TiO2-NPs) may disrupt the intracellular process of macroautophagy. Autophagy plays a key role in human health and disease, particularly in cancer and neurodegenerative diseases. We herein investigated the in vitro biological effects of TiO2-NPs (18 nm) on autophagy in human keratinocytes (HaCaT) cells at non-cytotoxic levels. RESULTS: TiO2-NPs were characterized by transmission electron microscopy (TEM) and dynamic light scattering techniques. Cellular uptake, as evaluated by TEM and NanoSIMS revealed that NPs internalization led to the formation of autophagosomes. TiO2-NPs treatment did not reduce cell viability of HaCaT cells nor increased oxidative stress. Cellular autophagy was additionally evaluated by confocal microscopy using eGFP-LC3 keratinocytes, western blotting of autophagy marker LC3I/II, immunodetection of p62 and NBR1 proteins, and gene expression of LC3II, p62, NBR1, beclin1 and ATG5 by RT-qPCR. We also confirmed the formation and accumulation of autophagosomes in NPs treated cells with LC3-II upregulation. Based on the lack of degradation of p62 and NBR1 proteins, autophagosomes accumulation at a high dose (25.0 µg/ml) is due to blockage while a low dose (0.16 µg/ml) promoted autophagy. Cellular viability was not affected in either case. CONCLUSIONS: The uptake of TiO2-NPs led to a dose-dependent increase in autophagic effect under non-cytotoxic conditions. Our results suggest dose-dependent autophagic effect over time as a cellular response to TiO2-NPs. Most importantly, these findings suggest that simple toxicity data are not enough to understand the full impact of TiO2-NPs and their effects on cellular pathways or function.


Assuntos
Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Titânio/farmacologia , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fagossomos/efeitos dos fármacos
14.
Environ Toxicol Pharmacol ; 106: 104353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163529

RESUMO

A substantial increase in engineered nanoparticles in consumer products has been observed, heightening human and environmental exposure. Inhalation represents the primary route of human exposure, necessitating a focus on lung toxicity studies. However, to avoid ethical concerns the use of in vitro models is an efficient alternative to in vivo models. This study utilized an in vitro human alveolar barrier model at air-liquid-interface with four cell lines, for evaluating the biological effects of different gold nanoparticles. Exposure to PEGylated gold nanospheres, nanorods, and nanostars did not significantly impact viability after 24 h, yet all AuNPs induced cytotoxicity in the form of membrane integrity impairment. Gold quantification revealed cellular uptake and transport. Transcriptomic analysis identified gene expression changes, particularly related to the enhancement of immune cells. Despite limited impact, distinct effects were observed, emphasizing the influence of nanoparticles physicochemical parameters while demonstrating the model's efficacy in investigating particle biological effects.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/toxicidade , Ouro/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Linhagem Celular
15.
ACS Catal ; 13(22): 15182-15193, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026816

RESUMO

Thin films of cobalt porphyrin conjugated polymers bearing different substituents are prepared by oxidative chemical vapor deposition (oCVD) and investigated as heterogeneous electrocatalysts for the oxygen evolution reaction (OER). Interestingly, the electrocatalytic activity originates from polymer-derived, highly transparent Co(Fe)Ox species formed under operational alkaline conditions. Structural, compositional, electrical, and electrochemical characterizations reveal that the newly formed active catalyst greatly benefited from both the polymeric conformation of the porphyrin-based thin film and the inclusion of the iron-based species originating from the oCVD reaction. High-resolution mass spectrometry analyses combined with density functional theory (DFT) calculations showed that a close relationship exists between the porphyrin substituent, the extension of the π-conjugated system cobalt porphyrin conjugated polymer, and the dynamics of the polymer conversion leading to catalytically active Co(Fe)Ox species. This work evidences the precatalytic role of cobalt porphyrin conjugated polymers and uncovers the benefit of extended π-conjugation of the molecular matrix and iron inclusion on the formation and performance of the true active catalyst.

16.
Environ Sci Technol ; 46(2): 802-9, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22142334

RESUMO

Hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2), HAP), both as a synthetic material and as a constituent of bone char, can serve as an effective and relatively inexpensive filter material for fluoride (F(-)) removal from drinking water in low-income countries. Fluoride uptake on HAP can occur through different mechanisms, which are, in principle, influenced by solution composition. Suspensions of HAP (2 g L(-1)) were equilibrated under controlled pH conditions (pH 6.5, 7.3, 9.5) at 25 °C for 28 d after the addition of different F(-) concentrations (0.5-7.0 mM). The reacted HAP solids were examined with Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and Nano Secondary Ion Mass Spectroscopy (NanoSIMS). Fluoride uptake on HAP was dependent on pH, with the highest capacity at pH 6.5; the lowest uptake was found at pH 9.5. Under all experimental conditions, the thermodynamically stable mineral phase was fluorapatite, (Ca(10)(PO(4))(6)F(2), FAP). Fluoride uptake capacity was quantified on the basis of FTIR and XPS analysis, which was consistent with F(-) uptake from solution. The results of XPS and NanoSIMS analyses indicate that a fluoridated surface layer with a thickness of several nanometers is formed on nanosized HAP.


Assuntos
Durapatita/química , Fluoretos/química , Nanoestruturas/química , Poluentes Químicos da Água/química , Ânions , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Purificação da Água
17.
Anal Bioanal Chem ; 404(9): 2693-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22566200

RESUMO

Persistent organic pollutants are widely distributed in the environment and lots of toxicological data are available. However, little is known on the intracellular fate of such compounds. Here a method applying secondary ion mass spectrometry is described that can be used to visualize cellular localization of halogenated compounds and to semi-quantitatively calculate concentrations of such compounds. Of the model compounds tested, TBBPA was homogenously distributed in the cell membrane of the H295R cells while PFOS accumulated in very distinct locations in the cell membrane. Relative intracellular concentrations of 4-OH-BDE69 and 4-OH-BDE121 in GH3.TRE were 61 % and 18 %, respectively, compared to the parent compounds. These differences may partly explain that observed effect concentrations for 4-OH-BDEs in in vitro experiments are usually lower than what would be expected based on receptor binding studies. NanoSIMS50 proved to be a powerful tool to describe the cellular distribution of halogenated compounds. The semi-quantitative data that can be obtained may help to further explain results from in vitro or in vivo experiments.


Assuntos
Estruturas Celulares/metabolismo , Poluentes Ambientais/análise , Hidrocarbonetos Halogenados/análise , Espectrometria de Massa de Íon Secundário/métodos , Linhagem Celular Tumoral , Humanos
18.
ACS Appl Mater Interfaces ; 14(6): 8527-8536, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35108489

RESUMO

Strontium titanate (STO) is a well-known oxide used in a wide variety of applications due to its excellent stability and optoelectronic properties. However, its integration in photoelectrocatalytic devices is limited by the lack of fast and scalable methods to produce robust films at a low temperature and atmospheric pressure. Herein, we report an atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) approach for the synthesis of STO crystalline films and their applications for photoelectrochemical solar energy conversion. The film crystallinity, which plays a determinant role in the photoelectrochemical performance, was linked to the selected strontium precursor and injection method. Through thermal stability studies of the precursors [Sr(dpm), Sr(ipo), Sr(acac), and Ti(ipo)] and analysis of the solution droplet size, it was demonstrated that the closer thermal decomposition behavior and superior miscibility of the Sr(dpm) and Ti(ipo) precursors led to more homogeneous and crystalline films with the highest photoelectrochemical performance (16.5 µA cm-2 at 1.23 V vs RHE under 100 mW cm-2), which can be further improved by a factor of 3.4 using thermal annealing at 500 °C. Evidence of the impact of a strontium precursor on the properties of STO films is provided through thermogravimetric analysis, X-ray diffraction, energy-dispersive system, UV-vis, X-ray photoelectron spectroscopy, HIM-SIMS, and photoelectrochemical analysis.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35848892

RESUMO

Alkali postdeposition treatments of Cu(In,Ga)Se2 absorbers with KF, RbF, and CsF have led to remarkable efficiency improvements for chalcopyrite thin film solar cells. However, the effect of such treatments on the electronic properties and defect physics of the chalcopyrite absorber surfaces are not yet fully understood. In this work, we use scanning tunneling spectroscopy and X-ray photoelectron spectroscopy to compare the surface defect electronic properties and chemical composition of RbF-treated and nontreated absorbers. We find that the RbF treatment is effective in passivating electronic defect levels at the surface by preventing surface oxidation. Our X-ray photoelectron spectroscopy (XPS) data points to the presence of chemisorbed Rb on the surface with a bonding configuration similar to that of a RbInSe2 bulk compound. Yet, a quantitative analysis indicates Rb coverage in the submonolayer regime, which is likely causing the surface passivation. Furthermore, ab initio calculations confirm that RbF-treated surfaces are less prone to oxidation (in the form of Ga, In, and Se oxides) than bare chalcopyrite surfaces. In addition, elemental diffusion of Rb along with Na, Cu, and Ga is found to occur when the samples are annealed under ultrahigh vacuum conditions. Magnetic sector secondary ion mass spectrometry measurements indicate that there is a homogeneous spatial distribution of Rb on the surface both before and after annealing, albeit with an increased concentration at the surface after heat treatment. Depth-resolved magnetic sector secondary ion mass spectrometry measurements show that Rb diffusion within the bulk occurs predominantly along grain boundaries. Scanning tunneling and XPS measurements after subsequent annealing steps demonstrate that the Rb accumulation at the surface leads to the formation of metallic Rb phases, involving a significant increase of electronic defect levels and/or surface dipole formation. These results strongly suggest a deterioration of the absorber-window interface because of increased recombination losses after the heat-induced diffusion of Rb toward the interface.

20.
Nat Nanotechnol ; 17(6): 598-605, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35449409

RESUMO

Despite the remarkable progress in power conversion efficiency of perovskite solar cells, going from individual small-size devices into large-area modules while preserving their commercial competitiveness compared with other thin-film solar cells remains a challenge. Major obstacles include reduction of both the resistive losses and intrinsic defects in the electron transport layers and the reliable fabrication of high-quality large-area perovskite films. Here we report a facile solvothermal method to synthesize single-crystalline TiO2 rhombohedral nanoparticles with exposed (001) facets. Owing to their low lattice mismatch and high affinity with the perovskite absorber, their high electron mobility and their lower density of defects, single-crystalline TiO2 nanoparticle-based small-size devices achieve an efficiency of 24.05% and a fill factor of 84.7%. The devices maintain about 90% of their initial performance after continuous operation for 1,400 h. We have fabricated large-area modules and obtained a certified efficiency of 22.72% with an active area of nearly 24 cm2, which represents the highest-efficiency modules with the lowest loss in efficiency when scaling up.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA