Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Chem Res Toxicol ; 37(6): 923-934, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38842447

RESUMO

Benchmark dose (BMD) modeling estimates the dose of a chemical that causes a perturbation from baseline. Transcriptional BMDs have been shown to be relatively consistent with apical end point BMDs, opening the door to using molecular BMDs to derive human health-based guidance values for chemical exposure. Metabolomics measures the responses of small-molecule endogenous metabolites to chemical exposure, complementing transcriptomics by characterizing downstream molecular phenotypes that are more closely associated with apical end points. The aim of this study was to apply BMD modeling to in vivo metabolomics data, to compare metabolic BMDs to both transcriptional and apical end point BMDs. This builds upon our previous application of transcriptomics and BMD modeling to a 5-day rat study of triphenyl phosphate (TPhP), applying metabolomics to the same archived tissues. Specifically, liver from rats exposed to five doses of TPhP was investigated using liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance spectroscopy-based metabolomics. Following the application of BMDExpress2 software, 2903 endogenous metabolic features yielded viable dose-response models, confirming a perturbation to the liver metabolome. Metabolic BMD estimates were similarly sensitive to transcriptional BMDs, and more sensitive than both clinical chemistry and apical end point BMDs. Pathway analysis of the multiomics data sets revealed a major effect of TPhP exposure on cholesterol (and downstream) pathways, consistent with clinical chemistry measurements. Additionally, the transcriptomics data indicated that TPhP activated xenobiotic metabolism pathways, which was confirmed by using the underexploited capability of metabolomics to detect xenobiotic-related compounds. Eleven biotransformation products of TPhP were discovered, and their levels were highly correlated with multiple xenobiotic metabolism genes. This work provides a case study showing how metabolomics and transcriptomics can estimate mechanistically anchored points-of-departure. Furthermore, the study demonstrates how metabolomics can also discover biotransformation products, which could be of value within a regulatory setting, for example, as an enhancement of OECD Test Guideline 417 (toxicokinetics).


Assuntos
Biotransformação , Fígado , Metabolômica , Animais , Ratos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Relação Dose-Resposta a Droga , Benchmarking , Organofosfatos/toxicidade , Organofosfatos/metabolismo , Ratos Sprague-Dawley
2.
Toxicol Pathol ; 51(7-8): 470-481, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38288963

RESUMO

Toxicogenomic technologies query the genome, transcriptome, proteome, and the epigenome in a variety of toxicological conditions. Due to practical considerations related to the dynamic range of the assays, sensitivity, cost, and technological limitations, transcriptomic approaches are predominantly used in toxicogenomics. Toxicogenomics is being used to understand the mechanisms of toxicity and carcinogenicity, evaluate the translational relevance of toxicological responses from in vivo and in vitro models, and identify predictive biomarkers of disease and exposure. In this session, a brief overview of various transcriptomic technologies and practical considerations related to experimental design was provided. The advantages of gene network analyses to define mechanisms were also discussed. An assessment of the utility of toxicogenomic technologies in the environmental and pharmaceutical space showed that these technologies are being increasingly used to gain mechanistic insights and determining the translational relevance of adverse findings. Within the environmental toxicology area, there is a broader regulatory consideration of benchmark doses derived from toxicogenomics data. In contrast, these approaches are mainly used for internal decision-making in pharmaceutical development. Finally, the development and application of toxicogenomic signatures for prediction of apical endpoints of regulatory concern continues to be area of intense research.


Assuntos
Fígado , Toxicogenética , Perfilação da Expressão Gênica , Proteômica , Transcriptoma
3.
Arch Toxicol ; 97(8): 2291-2302, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37296313

RESUMO

In a joint effort involving scientists from academia, industry and regulatory agencies, ECETOC's activities in Omics have led to conceptual proposals for: (1) A framework that assures data quality for reporting and inclusion of Omics data in regulatory assessments; and (2) an approach to robustly quantify these data, prior to interpretation for regulatory use. In continuation of these activities this workshop explored and identified areas of need to facilitate robust interpretation of such data in the context of deriving points of departure (POD) for risk assessment and determining an adverse change from normal variation. ECETOC was amongst the first to systematically explore the application of Omics methods, now incorporated into the group of methods known as New Approach Methodologies (NAMs), to regulatory toxicology. This support has been in the form of both projects (primarily with CEFIC/LRI) and workshops. Outputs have led to projects included in the workplan of the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) group of the Organisation for Economic Co-operation and Development (OECD) and to the drafting of OECD Guidance Documents for Omics data reporting, with potentially more to follow on data transformation and interpretation. The current workshop was the last in a series of technical methods development workshops, with a sub-focus on the derivation of a POD from Omics data. Workshop presentations demonstrated that Omics data developed within robust frameworks for both scientific data generation and analysis can be used to derive a POD. The issue of noise in the data was discussed as an important consideration for identifying robust Omics changes and deriving a POD. Such variability or "noise" can comprise technical or biological variation within a dataset and should clearly be distinguished from homeostatic responses. Adverse outcome pathways (AOPs) were considered a useful framework on which to assemble Omics methods, and a number of case examples were presented in illustration of this point. What is apparent is that high dimension data will always be subject to varying processing pipelines and hence interpretation, depending on the context they are used in. Yet, they can provide valuable input for regulatory toxicology, with the pre-condition being robust methods for the collection and processing of data together with a comprehensive description how the data were interpreted, and conclusions reached.


Assuntos
Rotas de Resultados Adversos , Genômica , Genômica/métodos , Medição de Risco , Toxicogenética , Projetos de Pesquisa
4.
Nucleic Acids Res ; 48(W1): W472-W476, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32491175

RESUMO

To support rapid chemical toxicity assessment and mechanistic hypothesis generation, here we present an intuitive webtool allowing a user to identify target organs in the human body where a substance is estimated to be more likely to produce effects. This tool, called Tox21BodyMap, incorporates results of 9,270 chemicals tested in the United States federal Tox21 research consortium in 971 high-throughput screening (HTS) assays whose targets were mapped onto human organs using organ-specific gene expression data. Via Tox21BodyMap's interactive tools, users can visualize chemical target specificity by organ system, and implement different filtering criteria by changing gene expression thresholds and activity concentration parameters. Dynamic network representations, data tables, and plots with comprehensive activity summaries across all Tox21 HTS assay targets provide an overall picture of chemical bioactivity. Tox21BodyMap webserver is available at https://sandbox.ntp.niehs.nih.gov/bodymap/.


Assuntos
Software , Testes de Toxicidade/métodos , Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Internet , Especificidade de Órgãos
5.
Toxicol Appl Pharmacol ; 433: 115773, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688701

RESUMO

Carcinogenicity of hexavalent chromium [Cr (VI)] has been supported by a number of epidemiological and animal studies; however, its carcinogenic mode of action is still incompletely understood. To identify mechanisms involved in cancer development, we analyzed gene expression data from duodena of mice exposed to Cr(VI) in drinking water. This analysis included (i) identification of upstream regulatory molecules that are likely responsible for the observed gene expression changes, (ii) identification of annotated gene expression data from public repositories that correlate with gene expression changes in duodena of Cr(VI)-exposed mice, and (iii) identification of hallmark and oncogenic signature gene sets relevant to these data. We identified the inactivated CFTR gene among the top scoring upstream regulators, and found positive correlations between the expression data from duodena of Cr(VI)-exposed mice and other datasets in public repositories associated with the inactivation of the CFTR gene. In addition, we found enrichment of signatures for oncogenic signaling, sustained cell proliferation, impaired apoptosis and tissue remodeling. Results of our computational study support the tumor-suppressor role of the CFTR gene. Furthermore, our results support human relevance of the Cr(VI)-mediated carcinogenesis observed in the small intestines of exposed mice and suggest possible groups that may be more vulnerable to the adverse outcomes associated with the inactivation of CFTR by hexavalent chromium or other agents. Lastly, our findings predict, for the first time, the role of CFTR inactivation in chemical carcinogenesis and expand the range of plausible mechanisms that may be operative in Cr(VI)-mediated carcinogenesis of intestinal and possibly other tissues.


Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Cromo/toxicidade , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Neoplasias Duodenais/induzido quimicamente , Duodeno/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Poluentes Químicos da Água/toxicidade , Administração Oral , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromo/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Bases de Dados Genéticas , Água Potável , Neoplasias Duodenais/genética , Neoplasias Duodenais/metabolismo , Neoplasias Duodenais/patologia , Duodeno/metabolismo , Duodeno/patologia , Perfilação da Expressão Gênica , Camundongos , Medição de Risco , Biologia de Sistemas , Transcriptoma , Proteínas Supressoras de Tumor/metabolismo , Poluentes Químicos da Água/administração & dosagem
6.
Chem Res Toxicol ; 34(2): 634-640, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33356152

RESUMO

Molecular structure-based predictive models provide a proven alternative to costly and inefficient animal testing. However, due to a lack of interpretability of predictive models built with abstract molecular descriptors they have earned the notoriety of being black boxes. Interpretable models require interpretable descriptors to provide chemistry-backed predictive reasoning and facilitate intelligent molecular design. We developed a novel set of extensible chemistry-aware substructures, Saagar, to support interpretable predictive models and read-across protocols. Performance of Saagar in chemical characterization and search for structurally similar actives for read-across applications was compared with four publicly available fingerprint sets (MACCS (166), PubChem (881), ECFP4 (1024), ToxPrint (729)) in three benchmark sets (MUV, ULS, and Tox21) spanning ∼145 000 compounds and 78 molecular targets at 1%, 2%, 5%, and 10% false discovery rates. In 18 of the 20 comparisons, interpretable Saagar features performed better than the publicly available, but less interpretable and fixed-bit length, fingerprints. Examples are provided to show the enhanced capability of Saagar in extracting compounds with higher scaffold similarity. Saagar features are interpretable and efficiently characterize diverse chemical collections, thus making them a better choice for building interpretable predictive in silico models and read-across protocols.


Assuntos
Antraquinonas/química , Relação Quantitativa Estrutura-Atividade , Animais , Bases de Dados Factuais , Modelos Moleculares , Estrutura Molecular
7.
Chem Res Toxicol ; 34(2): 268-285, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33063992

RESUMO

Polycyclic aromatic compounds (PACs) are compounds with a minimum of two six-atom aromatic fused rings. PACs arise from incomplete combustion or thermal decomposition of organic matter and are ubiquitous in the environment. Within PACs, carcinogenicity is generally regarded to be the most important public health concern. However, toxicity in other systems (reproductive and developmental toxicity, immunotoxicity) has also been reported. Despite the large number of PACs identified in the environment, research attention to understand exposure and health effects of PACs has focused on a relatively limited subset, namely polycyclic aromatic hydrocarbons (PAHs), the PACs with only carbon and hydrogen atoms. To triage the rest of the vast number of PACs for more resource-intensive testing, we developed a data-driven approach to contextualize hazard characterization of PACs, by leveraging the available data from various data streams (in silico toxicity, in vitro activity, structural fingerprints, and in vivo data availability). The PACs were clustered on the basis of their in silico toxicity profiles containing predictions from 8 different categories (carcinogenicity, cardiotoxicity, developmental toxicity, genotoxicity, hepatotoxicity, neurotoxicity, reproductive toxicity, and urinary toxicity). We found that PACs with the same parent structure (e.g., fluorene) could have diverse in silico toxicity profiles. In contrast, PACs with similar substituted groups (e.g., alkylated-PAHs) or heterocyclics (e.g., N-PACs) with varying ring sizes could have similar in silico toxicity profiles, suggesting that these groups are better candidates for toxicity read-across analysis. The clusters/regions associated with certain in silico toxicity, in vitro activity, and structural fingerprints were identified. We found that genotoxicity/carcinogenicity (in silico toxicity) and xenobiotic homeostasis and stress response (in vitro activity), respectively, dominate the toxicity/activity variation seen in the PACs. The "hot spots" with enriched toxicity/activity in conjunction with availability of in vivo carcinogenicity data revealed regions of either data-poor (hydroxylated-PAHs) or data-rich (unsubstituted, parent PAHs) PACs. These regions offer potential targets for prioritization of further in vivo assessment and for chemical read-across efforts. The analysis results are searchable through an interactive web application (https://ntp.niehs.nih.gov/go/pacs_tableau), allowing for alternative hypothesis generation.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade , Análise de Componente Principal
8.
Regul Toxicol Pharmacol ; 125: 105020, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333066

RESUMO

Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.


Assuntos
Metabolômica/normas , Organização para a Cooperação e Desenvolvimento Econômico/normas , Toxicogenética/normas , Toxicologia/normas , Transcriptoma/fisiologia , Documentação/normas , Humanos
9.
Altern Lab Anim ; 49(3): 73-82, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34233495

RESUMO

New Approach Methodologies (NAMs) that employ artificial intelligence (AI) for predicting adverse effects of chemicals have generated optimistic expectations as alternatives to animal testing. However, the major underappreciated challenge in developing robust and predictive AI models is the impact of the quality of the input data on the model accuracy. Indeed, poor data reproducibility and quality have been frequently cited as factors contributing to the crisis in biomedical research, as well as similar shortcomings in the fields of toxicology and chemistry. In this article, we review the most recent efforts to improve confidence in the robustness of toxicological data and investigate the impact that data curation has on the confidence in model predictions. We also present two case studies demonstrating the effect of data curation on the performance of AI models for predicting skin sensitisation and skin irritation. We show that, whereas models generated with uncurated data had a 7-24% higher correct classification rate (CCR), the perceived performance was, in fact, inflated owing to the high number of duplicates in the training set. We assert that data curation is a critical step in building computational models, to help ensure that reliable predictions of chemical toxicity are achieved through use of the models.


Assuntos
Alternativas aos Testes com Animais , Inteligência Artificial , Animais , Simulação por Computador , Confiabilidade dos Dados , Reprodutibilidade dos Testes
10.
Bioinformatics ; 35(10): 1780-1782, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30329029

RESUMO

SUMMARY: A new version (version 2) of the genomic dose-response analysis software, BMDExpress, has been created. The software addresses the increasing use of transcriptomic dose-response data in toxicology, drug design, risk assessment and translational research. In this new version, we have implemented additional statistical filtering options (e.g. Williams' trend test), curve fitting models, Linux and Macintosh compatibility and support for additional transcriptomic platforms with up-to-date gene annotations. Furthermore, we have implemented extensive data visualizations, on-the-fly data filtering, and a batch-wise analysis workflow. We have also significantly re-engineered the code base to reflect contemporary software engineering practices and streamline future development. The first version of BMDExpress was developed in 2007 to meet an unmet demand for easy-to-use transcriptomic dose-response analysis software. Since its original release, however, transcriptomic platforms, technologies, pathway annotations and quantitative methods for data analysis have undergone a large change necessitating a significant re-development of BMDExpress. To that end, as of 2016, the National Toxicology Program assumed stewardship of BMDExpress. The result is a modernized and updated BMDExpress 2 that addresses the needs of the growing toxicogenomics user community. AVAILABILITY AND IMPLEMENTATION: BMDExpress 2 is available at https://github.com/auerbachs/BMDExpress-2/releases. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Transcriptoma , Fluxo de Trabalho , Genoma , Anotação de Sequência Molecular , Software
11.
Toxicol Appl Pharmacol ; 397: 115017, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344290

RESUMO

CAsE-PE cells are an arsenic-transformed, human prostate epithelial line containing oncogenic mutations in KRAS compared to immortalized, normal KRAS parent cells, RWPE-1. We previously reported increased copy number of mutated KRAS in CAsE-PE cells, suggesting gene amplification. Here, KRAS flanking genomic and transcriptomic regions were sequenced in CAsE-PE cells for insight into KRAS amplification. Comparison of DNA-Seq and RNA-Seq showed increased reads from background aligning to all KRAS exons in CAsE-PE cells, while a uniform DNA-Seq read distribution occurred in RWPE-1 cells with normal transcript expression. We searched for KRAS fusions in DNA and RNA sequencing data finding a portion of reads aligning to KRAS and viral sequence. After generation of cDNA from total RNA, short and long KRAS probes were generated to hybridize cDNA and KRAS enriched fragments were PacBio sequenced. More KRAS reads were captured from CAsE-PE cDNA versus RWPE-1 by each probe set. Only CAsE-PE cDNA showed KRAS viral fusion transcripts, primarily mapping to LTR and endogenous retrovirus sequences on either 5'- or 3'-ends of KRAS. Most KRAS viral fusion transcripts contained 4 to 6 exons but some PacBio sequences were in unusual orientations, suggesting viral insertions within the gene body. Additionally, conditioned media was extracted for potential retroviral particles. RNA-Seq of culture media isolates identified KRAS retroviral fusion transcripts in CAsE-PE media only. Truncated KRAS transcripts suggested multiple retroviral integration sites occurred within the KRAS gene producing KRAS retroviral fusions of various lengths. Findings suggest activation of endogenous retroviruses in arsenic carcinogenesis should be explored.

12.
Chem Res Toxicol ; 32(7): 1384-1401, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243984

RESUMO

Genotoxicity is a critical component of a comprehensive toxicological profile. The Tox21 Program used five quantitative high-throughput screening (qHTS) assays measuring some aspect of DNA damage/repair to provide information on the genotoxic potential of over 10 000 compounds. Included were assays detecting activation of p53, increases in the DNA repair protein ATAD5, phosphorylation of H2AX, and enhanced cytotoxicity in DT40 cells deficient in DNA-repair proteins REV3 or KU70/RAD54. Each assay measures a distinct component of the DNA damage response signaling network; >70% of active compounds were detected in only one of the five assays. When qHTS results were compared with results from three standard genotoxicity assays (bacterial mutation, in vitro chromosomal aberration, and in vivo micronucleus), a maximum of 40% of known, direct-acting genotoxicants were active in one or more of the qHTS genotoxicity assays, indicating low sensitivity. This suggests that these qHTS assays cannot in their current form be used to replace traditional genotoxicity assays. However, despite the low sensitivity, ranking chemicals by potency of response in the qHTS assays revealed an enrichment for genotoxicants up to 12-fold compared with random selection, when allowing a 1% false positive rate. This finding indicates these qHTS assays can be used to prioritize chemicals for further investigation, allowing resources to focus on compounds most likely to induce genotoxic effects. To refine this prioritization process, models for predicting the genotoxicity potential of chemicals that were active in Tox21 genotoxicity assays were constructed using all Tox21 assay data, yielding a prediction accuracy up to 0.83. Data from qHTS assays related to stress-response pathway signaling (including genotoxicity) were the most informative for model construction. By using the results from qHTS genotoxicity assays, predictions from models based on qHTS data, and predictions from commercial bacterial mutagenicity QSAR models, we prioritized Tox21 chemicals for genotoxicity characterization.


Assuntos
Mutagênicos/análise , Animais , Células CHO , Linhagem Celular Tumoral , Galinhas , Cricetulus , DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Mutagênicos/farmacologia , Curva ROC
13.
Toxicol Pathol ; 46(6): 706-718, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30045675

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide; however, the mutational properties of HCC-associated carcinogens remain largely uncharacterized. We hypothesized that mechanisms underlying chemical-induced HCC can be characterized by evaluating the mutational spectra of these tumors. To test this hypothesis, we performed exome sequencing of B6C3F1/N HCCs that arose either spontaneously in vehicle controls ( n = 3) or due to chronic exposure to gingko biloba extract (GBE; n = 4) or methyleugenol (MEG; n = 3). Most archived tumor samples are available as formalin-fixed paraffin-embedded (FFPE) blocks, rather than fresh-frozen (FF) samples; hence, exome sequencing from paired FF and FFPE samples was compared. FF and FFPE samples showed 63% to 70% mutation concordance. Multiple known (e.g., Ctnnb1T41A, BrafV637E) and novel (e.g., Erbb4C559S, Card10A700V, and Klf11P358L) mutations in cancer-related genes were identified. The overall mutational burden was greater for MEG than for GBE or spontaneous HCC samples. To characterize the mutagenic mechanisms, we analyzed the mutational spectra in the HCCs according to their trinucleotide motifs. The MEG tumors clustered closest to Catalogue of Somatic Mutations in Cancer signatures 4 and 24, which are, respectively, associated with benzo(a)pyrene- and aflatoxin-induced HCCs in humans. These results establish a novel approach for classifying liver carcinogens and understanding the mechanisms of hepatocellular carcinogenesis.


Assuntos
Carcinógenos/toxicidade , Exoma/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas Experimentais/genética , Fígado/efeitos dos fármacos , Mutação , Análise de Sequência de DNA/métodos , Animais , Criopreservação , DNA de Neoplasias/genética , Eugenol/análogos & derivados , Eugenol/toxicidade , Feminino , Formaldeído/química , Ginkgo biloba , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos Endogâmicos , Inclusão em Parafina , Extratos Vegetais/toxicidade , Reprodutibilidade dos Testes , Fixação de Tecidos
14.
Chem Res Toxicol ; 30(10): 1911-1920, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28927277

RESUMO

Prenatal inorganic arsenic (iAs) exposure influences the expression of critical genes and proteins associated with adverse outcomes in newborns, in part through epigenetic mediators. The doses at which these genomic and epigenomic changes occur have yet to be evaluated in the context of dose-response modeling. The goal of the present study was to estimate iAs doses that correspond to changes in transcriptomic, proteomic, epigenomic, and integrated multi-omic signatures in human cord blood through benchmark dose (BMD) modeling. Genome-wide DNA methylation, microRNA expression, mRNA expression, and protein expression levels in cord blood were modeled against total urinary arsenic (U-tAs) levels from pregnant women exposed to varying levels of iAs. Dose-response relationships were modeled in BMDExpress, and BMDs representing 10% response levels were estimated. Overall, DNA methylation changes were estimated to occur at lower exposure concentrations in comparison to other molecular endpoints. Multi-omic module eigengenes were derived through weighted gene co-expression network analysis, representing co-modulated signatures across transcriptomic, proteomic, and epigenomic profiles. One module eigengene was associated with decreased gestational age occurring alongside increased iAs exposure. Genes/proteins within this module eigengene showed enrichment for organismal development, including potassium voltage-gated channel subfamily Q member 1 (KCNQ1), an imprinted gene showing differential methylation and expression in response to iAs. Modeling of this prioritized multi-omic module eigengene resulted in a BMD(BMDL) of 58(45) µg/L U-tAs, which was estimated to correspond to drinking water arsenic concentrations of 51(40) µg/L. Results are in line with epidemiological evidence supporting effects of prenatal iAs occurring at levels <100 µg As/L urine. Together, findings present a variety of BMD measures to estimate doses at which prenatal iAs exposure influences neonatal outcome-relevant transcriptomic, proteomic, and epigenomic profiles.


Assuntos
Arsênio/análise , Benchmarking , Epigenômica , Modelos Químicos , Proteoma , Adolescente , Adulto , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Transcriptoma , Adulto Jovem
15.
Environ Sci Technol ; 51(18): 10786-10796, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28809115

RESUMO

In vitro-in vivo extrapolation (IVIVE) analyses translating high-throughput screening (HTS) data to human relevance have been limited. This study represents the first report applying IVIVE approaches and exposure comparisons using the entirety of the Tox21 federal collaboration chemical screening data, incorporating assay response efficacy and quality of concentration-response fits, and providing quantitative anchoring to first address the likelihood of human in vivo interactions with Tox21 compounds. This likelihood was assessed using a maximum blood concentration to in vitro response ratio approach (Cmax/AC50), analogous to decision-making methods for clinical drug-drug interactions. Fraction unbound in plasma (fup) and intrinsic hepatic clearance (CLint) parameters were estimated in silico and incorporated in a three-compartment toxicokinetic (TK) model to first predict Cmax for in vivo corroboration using therapeutic scenarios. Toward lower exposure scenarios, 36 compounds of 3925 unique chemicals with curated activity in the HTS data using high-quality dose-response model fits and ≥40% efficacy gave "possible" human in vivo interaction likelihoods lower than median human exposures predicted in the United States Environmental Protection Agency's ExpoCast program. A publicly available web application has been designed to provide all Tox21-ToxCast dose-likelihood predictions. Overall, this approach provides an intuitive framework to relate in vitro toxicology data rapidly and quantitatively to exposures using either in vitro or in silico derived TK parameters and can be thought of as an important step toward estimating plausible biological interactions in a high-throughput risk-assessment framework.


Assuntos
Simulação por Computador , Interações Medicamentosas , Modelos Biológicos , Medição de Risco , Toxicocinética , Bioensaio , Poluentes Ambientais , Substâncias Perigosas , Humanos , Estados Unidos , United States Environmental Protection Agency
16.
J Appl Toxicol ; 35(7): 766-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25378103

RESUMO

Formalin-fixed, paraffin-embedded (FFPE) pathology specimens represent a potentially vast resource for transcriptomic-based biomarker discovery. We present here a comparison of results from a whole transcriptome RNA-Seq analysis of RNA extracted from fresh frozen and FFPE livers. The samples were derived from rats exposed to aflatoxin B1 (AFB1 ) and a corresponding set of control animals. Principal components analysis indicated that samples were separated in the two groups representing presence or absence of chemical exposure, both in fresh frozen and FFPE sample types. Sixty-five percent of the differentially expressed transcripts (AFB1 vs. controls) in fresh frozen samples were also differentially expressed in FFPE samples (overlap significance: P < 0.0001). Genomic signature and gene set analysis of AFB1 differentially expressed transcript lists indicated highly similar results between fresh frozen and FFPE at the level of chemogenomic signatures (i.e., single chemical/dose/duration elicited transcriptomic signatures), mechanistic and pathology signatures, biological processes, canonical pathways and transcription factor networks. Overall, our results suggest that similar hypotheses about the biological mechanism of toxicity would be formulated from fresh frozen and FFPE samples. These results indicate that phenotypically anchored archival specimens represent a potentially informative resource for signature-based biomarker discovery and mechanistic characterization of toxicity.


Assuntos
Perfilação da Expressão Gênica/métodos , Fígado/efeitos dos fármacos , Análise de Sequência de RNA/métodos , Toxicogenética/métodos , Aflatoxina B1/toxicidade , Animais , Biomarcadores Farmacológicos/análise , Formaldeído , Congelamento , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/patologia , Masculino , Ratos , Ratos Endogâmicos F344
17.
Front Toxicol ; 6: 1390196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903859

RESUMO

Toxicants with the potential to bioaccumulate in humans and animals have long been a cause for concern, particularly due to their association with multiple diseases and organ injuries. Per- and polyfluoro alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH) are two such classes of chemicals that bioaccumulate and have been associated with steatosis in the liver. Although PFAS and PAH are classified as chemicals of concern, their molecular mechanisms of toxicity remain to be explored in detail. In this study, we aimed to identify potential mechanisms by which an acute exposure to PFAS and PAH chemicals can induce lipid accumulation and whether the responses depend on chemical class, dose, and sex. To this end, we analyzed mechanisms beginning with the binding of the chemical to a molecular initiating event (MIE) and the consequent transcriptomic alterations. We collated potential MIEs using predictions from our previously developed ToxProfiler tool and from published steatosis adverse outcome pathways. Most of the MIEs are transcription factors, and we collected their target genes by mining the TRRUST database. To analyze the effects of PFAS and PAH on the steatosis mechanisms, we performed a computational MIE-target gene analysis on high-throughput transcriptomic measurements of liver tissue from male and female rats exposed to either a PFAS or PAH. The results showed peroxisome proliferator-activated receptor (PPAR)-α targets to be the most dysregulated, with most of the genes being upregulated. Furthermore, PFAS exposure disrupted several lipid metabolism genes, including upregulation of fatty acid oxidation genes (Acadm, Acox1, Cpt2, Cyp4a1-3) and downregulation of lipid transport genes (Apoa1, Apoa5, Pltp). We also identified multiple genes with sex-specific behavior. Notably, the rate-limiting genes of gluconeogenesis (Pck1) and bile acid synthesis (Cyp7a1) were specifically downregulated in male rats compared to female rats, while the rate-limiting gene of lipid synthesis (Scd) showed a PFAS-specific upregulation. The results suggest that the PPAR signaling pathway plays a major role in PFAS-induced lipid accumulation in rats. Together, these results show that PFAS exposure induces a sex-specific multi-factorial mechanism involving rate-limiting genes of gluconeogenesis and bile acid synthesis that could lead to activation of an adverse outcome pathway for steatosis.

18.
Mutat Res ; 752(1): 6-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22935230

RESUMO

Next-generation sequencing technologies can now be used to directly measure heritable de novo DNA sequence mutations in humans. However, these techniques have not been used to examine environmental factors that induce such mutations and their associated diseases. To address this issue, a working group on environmentally induced germline mutation analysis (ENIGMA) met in October 2011 to propose the necessary foundational studies, which include sequencing of parent-offspring trios from highly exposed human populations, and controlled dose-response experiments in animals. These studies will establish background levels of variability in germline mutation rates and identify environmental agents that influence these rates and heritable disease. Guidance for the types of exposures to examine come from rodent studies that have identified agents such as cancer chemotherapeutic drugs, ionizing radiation, cigarette smoke, and air pollution as germ-cell mutagens. Research is urgently needed to establish the health consequences of parental exposures on subsequent generations.


Assuntos
Interação Gene-Ambiente , Doenças Genéticas Inatas/genética , Genômica , Animais , Poluentes Ambientais/toxicidade , Mutação em Linhagem Germinativa , Humanos , Efeitos da Radiação , Produtos do Tabaco/efeitos adversos
19.
Comput Toxicol ; 252023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36909352

RESUMO

The need to analyze the complex relationships observed in high-throughput toxicogenomic and other omic platforms has resulted in an explosion of methodological advances in computational toxicology. However, advancements in the literature often outpace the development of software researchers can implement in their pipelines, and existing software is frequently based on pre-specified workflows built from well-vetted assumptions that may not be optimal for novel research questions. Accordingly, there is a need for a stable platform and open-source codebase attached to a programming language that allows users to program new algorithms. To fill this gap, the Biostatistics and Computational Biology Branch of the National Institute of Environmental Health Sciences, in cooperation with the National Toxicology Program (NTP) and US Environmental Protection Agency (EPA), developed ToxicR, an open-source R programming package. The ToxicR platform implements many of the standard analyses used by the NTP and EPA, including dose-response analyses for continuous and dichotomous data that employ Bayesian, maximum likelihood, and model averaging methods, as well as many standard tests the NTP uses in rodent toxicology and carcinogenicity studies, such as the poly-K and Jonckheere trend tests. ToxicR is built on the same codebase as current versions of the EPA's Benchmark Dose software and NTP's BMDExpress software but has increased flexibility because it directly accesses this software. To demonstrate ToxicR, we developed a custom workflow to illustrate its capabilities for analyzing toxicogenomic data. The unique features of ToxicR will allow researchers in other fields to add modules, increasing its functionality in the future.

20.
Int J Radiat Biol ; 99(9): 1320-1331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881459

RESUMO

BACKGROUND: Exposure to different forms of ionizing radiation occurs in diverse occupational, medical, and environmental settings. Improving the accuracy of the estimated health risks associated with exposure is therefore, essential for protecting the public, particularly as it relates to chronic low dose exposures. A key aspect to understanding health risks is precise and accurate modeling of the dose-response relationship. Toward this vision, benchmark dose (BMD) modeling may be a suitable approach for consideration in the radiation field. BMD modeling is already extensively used for chemical hazard assessments and is considered statistically preferable to identifying low and no observed adverse effects levels. BMD modeling involves fitting mathematical models to dose-response data for a relevant biological endpoint and identifying a point of departure (the BMD, or its lower bound). Recent examples in chemical toxicology show that when applied to molecular endpoints (e.g. genotoxic and transcriptional endpoints), BMDs correlate to points of departure for more apical endpoints such as phenotypic changes (e.g. adverse effects) of interest to regulatory decisions. This use of BMD modeling may be valuable to explore in the radiation field, specifically in combination with adverse outcome pathways, and may facilitate better interpretation of relevant in vivo and in vitro dose-response data. To advance this application, a workshop was organized on June 3rd, 2022, in Ottawa, Ontario that brought together BMD experts in chemical toxicology and the radiation scientific community of researchers, regulators, and policy-makers. The workshop's objective was to introduce radiation scientists to BMD modeling and its practical application using case examples from the chemical toxicity field and demonstrate the BMDExpress software using a radiation dataset. Discussions focused on the BMD approach, the importance of experimental design, regulatory applications, its use in supporting the development of adverse outcome pathways, and specific radiation-relevant examples. CONCLUSIONS: Although further deliberations are needed to advance the use of BMD modeling in the radiation field, these initial discussions and partnerships highlight some key steps to guide future undertakings related to new experimental work.


Assuntos
Benchmarking , Modelos Teóricos , Benchmarking/métodos , Dano ao DNA , Medição de Risco/métodos , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA