Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anim Microbiome ; 4(1): 37, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659312

RESUMO

Biological invasion is one of the main components of global changes in aquatic ecosystems. Unraveling how establishment in novel environments affects key biological features of animals is a key step towards understanding invasion. Gut microbiome of herbivorous animals is important for host health but has been scarcely assessed in invasive species. Here, we characterized the gut microbiome of two invasive marine herbivorous fishes (Siganus rivulatus and Siganus luridus) in their native (Red Sea) and invaded (Mediterranean Sea) ranges. The taxonomic and phylogenetic diversity of the microbiome increased as the fishes move away from the native range and its structure became increasingly different from the native microbiome. These shifts resulted in homogenization of the microbiome in the invaded range, within and between the two species. The shift in microbial diversity was associated with changes in its functions related with the metabolism of short-chain fatty acids. Altogether, our results suggest that the environmental conditions encountered by Siganidae during their expansion in Mediterranean ecosystems strongly modifies the composition of their gut microbiome along with its putative functions. Further studies should pursue to identify the precise determinants of these modifications (e.g. changes in host diet or behavior, genetic differentiation) and whether they participate in the ecological success of these species.

2.
Sci Total Environ ; 838(Pt 3): 156207, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35636548

RESUMO

Direct and indirect impacts by invasive animals on plants and other animals through predation and competition have been evidenced in many ecosystems. For instance, the rabbitfish Siganus rivulatus, originating from the Red Sea, is now the most abundant species in costal habitats of South-Eastern Mediterranean Sea where it overgrazes algae. However, little is known about its impacts on microbes through release of metabolic wastes and feces. We used a mesocosm experiment to test the effect of S. rivulatus on planktonic and benthic microbial communities. Excretion of dissolved nutrients by fish resulted in higher concentrations of dissolved inorganic nitrogen (NH4, NO2/NO3). This increase in availability of N was associated with higher N content in macroalgae, higher biomass of phytoplankton, higher abundance of bacterioplankton and shift in the structure of planktonic bacterial communities. The feces released mostly under the shelters where the fish rest at night, led to significant increases in diversity of sediment bacterial communities and shifts in their structure. The impact of S. rivulatus on planktonic microbes was related to the indirect bottom-up effect induced by excreted dissolved nutrients while its effect on benthic microbes was due to the direct release of both organic matter and microbes present in feces. Overall, this first evidence of the impacts of invasive species on planktonic and benthic microbes highlights that ongoing changes in fish biodiversity could have ecosystem-wide consequences.


Assuntos
Ecossistema , Plâncton , Animais , Defecação , Peixes , Mar Mediterrâneo , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA