Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Immunity ; 49(5): 915-928.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30446384

RESUMO

Innate lymphoid cells (ILCs) are important for mucosal immunity. The intestine harbors all ILC subsets, but how these cells are balanced to achieve immune homeostasis and mount appropriate responses during infection remains elusive. Here, we show that aryl hydrocarbon receptor (Ahr) expression in the gut regulates ILC balance. Among ILCs, Ahr is most highly expressed by gut ILC2s and controls chromatin accessibility at the Ahr locus via positive feedback. Ahr signaling suppresses Gfi1 transcription-factor-mediated expression of the interleukin-33 (IL-33) receptor ST2 in ILC2s and expression of ILC2 effector molecules IL-5, IL-13, and amphiregulin in a cell-intrinsic manner. Ablation of Ahr enhances anti-helminth immunity in the gut, whereas genetic or pharmacological activation of Ahr suppresses ILC2 function but enhances ILC3 maintenance to protect the host from Citrobacter rodentium infection. Thus, the host regulates the gut ILC2-ILC3 balance by engaging the Ahr pathway to mount appropriate immunity against various pathogens.


Assuntos
Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Biomarcadores , Cromatina/genética , Cromatina/metabolismo , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Loci Gênicos , Interações Hospedeiro-Parasita/imunologia , Imunidade nas Mucosas/genética , Imunofenotipagem , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 119(43): e2205417119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256820

RESUMO

Antigen-specific therapies hold promise for treating autoimmune diseases such as multiple sclerosis while avoiding the deleterious side effects of systemic immune suppression due to delivering the disease-specific antigen as part of the treatment. In this study, an antigen-specific dual-sized microparticle (dMP) treatment reversed hind limb paralysis when administered in mice with advanced experimental autoimmune encephalomyelitis (EAE). Treatment reduced central nervous system (CNS) immune cell infiltration, demyelination, and inflammatory cytokine levels. Mechanistic insights using single-cell RNA sequencing showed that treatment impacted the MHC II antigen presentation pathway in dendritic cells, macrophages, B cells, and microglia, not only in the draining lymph nodes but also strikingly in the spinal cord. CD74 and cathepsin S were among the common genes down-regulated in most antigen presenting cell (APC) clusters, with B cells also having numerous MHC II genes reduced. Efficacy of the treatment diminished when B cells were absent, suggesting their impact in this therapy, in concert with other immune populations. Activation and inflammation were reduced in both APCs and T cells. This promising antigen-specific therapeutic approach advantageously engaged essential components of both innate and adaptive autoimmune responses and capably reversed paralysis in advanced EAE without the use of a broad immunosuppressant.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Antígenos , Citocinas , Camundongos Endogâmicos C57BL , Paralisia , Catepsinas , Imunossupressores/uso terapêutico
3.
Immunity ; 43(2): 354-68, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26231117

RESUMO

Type 2 innate lymphoid cells (ILC2s) promote anti-helminth responses and contribute to allergies. Here, we report that Bcl11b, previously considered a T-cell-specific transcription factor, acted directly upstream of the key ILC2 transcription factor Gfi1 to maintain its expression in mature ILC2s. Consequently, Bcl11b(-/-) ILC2s downregulated Gata3 and downstream genes, including Il1rl1 (encoding IL-33 receptor), and upregulated Rorc and type 3 ILC (ILC3) genes. Additionally, independent of Gfi1, Bcl11b directly repressed expression of the gene encoding the ILC3 transcription factor Ahr, further contributing to silencing of ILC3 genes in ILC2s. Thus, Bcl11b(-/-) ILC2s lost their functions and gained ILC3 functions, and although they expanded in response to the protease allergen papain, they produced ILC3 but not ILC2 cytokines and caused increased airway infiltration of neutrophils instead of eosinophils. Our results demonstrate that Bcl11b is more than just a T-cell-only transcription factor and establish that Bcl11b sustains mature ILC2 genetic and functional programs and lineage fidelity.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Eosinófilos/imunologia , Subpopulações de Linfócitos/imunologia , Linfócitos/imunologia , Neutrófilos/imunologia , Proteínas Repressoras/metabolismo , Células Th2/imunologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Linhagem da Célula , Movimento Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica/genética , Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1 , Camundongos , Camundongos Endogâmicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Interleucina/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
5.
Gastroenterology ; 154(6): 1751-1763.e2, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408609

RESUMO

BACKGROUND & AIMS: Campylobacter jejuni, a prevalent foodborne bacterial pathogen, exploits the host innate response to induce colitis. Little is known about the roles of microbiota in C jejuni-induced intestinal inflammation. We investigated interactions between microbiota and intestinal cells during C jejuni infection of mice. METHODS: Germ-free C57BL/6 Il10-/- mice were colonized with conventional microbiota and infected with a single dose of C jejuni (109 colony-forming units/mouse) via gavage. Conventional microbiota were cultured under aerobic, microaerobic, or anaerobic conditions and orally transplanted into germ-free Il10-/- mice. Colon tissues were collected from mice and analyzed by histology, real-time polymerase chain reaction, and immunoblotting. Fecal microbiota and bile acids were analyzed with 16S sequencing and high-performance liquid chromatography with mass spectrometry, respectively. RESULTS: Introduction of conventional microbiota reduced C jejuni-induced colitis in previously germ-free Il10-/- mice, independent of fecal load of C jejuni, accompanied by reduced activation of mammalian target of rapamycin. Microbiota transplantation and 16S ribosomal DNA sequencing experiments showed that Clostridium XI, Bifidobacterium, and Lactobacillus were enriched in fecal samples from mice colonized with microbiota cultured in anaerobic conditions (which reduce colitis) compared with mice fed microbiota cultured under aerobic conditions (susceptible to colitis). Oral administration to mice of microbiota-derived secondary bile acid sodium deoxycholate, but not ursodeoxycholic acid or lithocholic acid, reduced C jejuni-induced colitis. Depletion of secondary bile acid-producing bacteria with antibiotics that kill anaerobic bacteria (clindamycin) promoted C jejuni-induced colitis in specific pathogen-free Il10-/- mice compared with the nonspecific antibiotic nalidixic acid; colitis induction by antibiotics was associated with reduced level of luminal deoxycholate. CONCLUSIONS: We identified a mechanism by which the microbiota controls susceptibility to C jejuni infection in mice, via bacteria-derived secondary bile acids.


Assuntos
Ácidos e Sais Biliares/administração & dosagem , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/metabolismo , Gastroenterite/microbiologia , Microbioma Gastrointestinal/fisiologia , Anaerobiose , Animais , Colagogos e Coleréticos/administração & dosagem , Colo/microbiologia , Técnicas de Cultura/métodos , Ácido Desoxicólico/administração & dosagem , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes/microbiologia , Intestinos/citologia , Ácido Litocólico/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Ácido Ursodesoxicólico/administração & dosagem
6.
Proc Natl Acad Sci U S A ; 113(27): 7608-13, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27330109

RESUMO

Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipid antigens and play critical roles in regulation of immune responses. Based on expression of the transcription factors (TFs) Tbet, Plzf, and Rorγt, iNKT cells have been classified in effector subsets that emerge in the thymus, namely, iNKT1, iNKT2, and iNKT17. Deficiency in the TF Bcl11b in double-positive (DP) thymocytes has been shown to cause absence of iNKT cells in the thymus and periphery due to defective self glycolipid processing and presentation by DP thymocytes and undefined intrinsic alterations in iNKT precursors. We used a model of cre-mediated postselection deletion of Bcl11b in iNKT cells to determine its intrinsic role in these cells. We found that Bcl11b is expressed equivalently in all three effector iNKT subsets, and its removal caused a reduction in the numbers of iNKT1 and iNKT2 cells, but not in the numbers of iNKT17 cells. Additionally, we show that Bcl11b sustains subset-specific cytokine production by iNKT1 and iNKT2 cells and restricts expression of iNKT17 genes in iNKT1 and iNKT2 subsets, overall restraining the iNKT17 program in iNKT cells. The total numbers of iNKT cells were reduced in the absence of Bcl11b both in the thymus and periphery, associated with the decrease in iNKT1 and iNKT2 cell numbers and decrease in survival, related to changes in survival/apoptosis genes. Thus, these results extend our understanding of the role of Bcl11b in iNKT cells beyond their selection and demonstrate that Bcl11b is a key regulator of iNKT effector subsets, their function, identity, and survival.


Assuntos
Células T Matadoras Naturais/fisiologia , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Citocinas/metabolismo , Regulação da Expressão Gênica , Camundongos , Neuropilina-1/metabolismo , Timo/imunologia
7.
Am J Respir Cell Mol Biol ; 58(2): 170-180, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28862882

RESUMO

Pulmonary hypertension (PH) complicates the care of patients with chronic lung disease, such as idiopathic pulmonary fibrosis (IPF), resulting in a significant increase in morbidity and mortality. Disease pathogenesis is orchestrated by unidentified myeloid-derived cells. We used murine models of PH and pulmonary fibrosis to study the role of circulating myeloid cells in disease pathogenesis and prevention. We administered clodronate liposomes to bleomycin-treated wild-type mice to induce pulmonary fibrosis and PH with a resulting increase in circulating bone marrow-derived cells. We discovered that a population of C-X-C motif chemokine receptor (CXCR) 2+ myeloid-derived suppressor cells (MDSCs), granulocytic subset (G-MDSC), is associated with severe PH in mice. Pulmonary pressures worsened despite improvement in bleomycin-induced pulmonary fibrosis. PH was attenuated by CXCR2 inhibition, with antagonist SB 225002, through decreasing G-MDSC recruitment to the lung. Molecular and cellular analysis of clinical patient samples confirmed a role for elevated MDSCs in IPF and IPF with PH. These data show that MDSCs play a key role in PH pathogenesis and that G-MDSC trafficking to the lung, through chemokine receptor CXCR2, increases development of PH in multiple murine models. Furthermore, we demonstrate pathology similar to the preclinical models in IPF with lung and blood samples from patients with PH, suggesting a potential role for CXCR2 inhibitor use in this patient population. These findings are significant, as there are currently no approved disease-specific therapies for patients with PH complicating IPF.


Assuntos
Hipertensão Pulmonar/patologia , Fibrose Pulmonar Idiopática/patologia , Células Supressoras Mieloides/patologia , Receptores de Interleucina-8B/metabolismo , Animais , Arginase/metabolismo , Bleomicina/farmacologia , Movimento Celular/efeitos dos fármacos , Ácido Clodrônico/farmacologia , Feminino , Interleucina-8/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Compostos de Fenilureia/farmacologia , Receptores de Interleucina-8B/antagonistas & inibidores
8.
PLoS Pathog ; 12(3): e1005517, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27015566

RESUMO

Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.


Assuntos
Francisella tularensis/imunologia , Receptor 2 Toll-Like/metabolismo , Tularemia/imunologia , Animais , Citocinas/metabolismo , Humanos , Inflamação , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Pneumonia/metabolismo
9.
J Surg Res ; 208: 180-186, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27993206

RESUMO

BACKGROUND: Little is known about how the immunologic microenvironment changes during tumor progression and metastatic spread. Recently, murine models have shown the T-helper 17 (Th17) pathway to play an important role in promoting colorectal cancer (CRC). The purpose of this study was to compare cytokine profiles in the tumor microenvironment of CRC between local disease (stages I/II) and advanced disease (stages III/IV), and to determine whether these changes were manifest in the systemic circulation of patients with advanced disease. MATERIALS AND METHODS: Serum and tissue cytokine profiles were assayed among patients with documented adenocarcinoma before surgical resection at a single institution from September 2014 to February 2015. Using the Bio-Plex Pro Human Th17 Cytokine Assay Kit (Bio-Rad Laboratories), the concentrations of multiple cytokines were determined. Multiple logistic regression analyses were used to evaluate the association between TNM staging and cytokine levels. RESULTS: A total of 33 patients with documented adenocarcinoma were included. None of the patients received neoadjuvant chemotherapy. American Joint Commission on Cancer TNM classification was used. Advanced disease was associated with elevated tumor levels of tumor necrosis factor-alpha, interleukin (IL)-4, IL-10, IL-17A, and IL-17F, and only stage IV showed elevated systemic levels of Th17-associated cytokines IL-17F, IL-23, and IL-25. CONCLUSIONS: The Th17 pathway likely has important mechanistic implications in human CRC. Metastatic disease was associated with elevated Th17-associated cytokines both in colonic tissue and systemically. These changes in systemic expression of Th17-associated cytokines could establish novel pathways for CRC and warrant further investigation.


Assuntos
Adenocarcinoma/imunologia , Neoplasias do Colo/imunologia , Células Th17/fisiologia , Adenocarcinoma/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/sangue , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
J Immunol ; 193(5): 2059-65, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25128552

RESUMO

The transcription factor Bcl11b is expressed in all T cell subsets and progenitors, starting from the DN2 stage of T cell development, and it regulates critical processes implicated in the development, function, and survival of many of these cells. Among the common roles of Bcl11b in T cell progenitors and mature T cell subsets are the repression of the innate genetic program and, to some extent, expression maintenance of TCR-signaling components. However, Bcl11b also has unique roles in specific T cell populations, suggesting that its functions depend on cell type and activation state of the cell. In this article, we provide a comprehensive review of the roles of Bcl11b in progenitors, effector T cells, regulatory T cells, and invariant NKT cells, as well as its impact on immune diseases. While emphasizing common themes, including some that might be extended to skin and neurons, we also describe the control of specific functions in different T cell subsets.


Assuntos
Doenças do Sistema Imunitário/imunologia , Células T Matadoras Naturais/imunologia , Células Precursoras de Linfócitos T/imunologia , Proteínas Repressoras/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Proteínas Supressoras de Tumor/imunologia , Animais , Humanos , Doenças do Sistema Imunitário/patologia , Células T Matadoras Naturais/patologia , Células Precursoras de Linfócitos T/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/patologia , Timo/patologia
11.
J Immunol ; 192(4): 1946-53, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24446520

RESUMO

Using several tumor models, we demonstrate that mice deficient in Bcl11b in T cells, although having reduced numbers of T cells in the peripheral lymphoid organs, developed significantly less tumors compared with wild-type mice. Bcl11b(-/-) CD4(+) T cells, with elevated TNF-α levels, but not the Bcl11b(-/-) CD8(+) T cells, were required for the reduced tumor burden, as were NK1.1(+) cells, found in increased numbers in Bcl11b(F/F)/CD4-Cre mice. Among NK1.1(+) cells, the NK cell population was predominant in number and was the only population displaying elevated granzyme B levels and increased degranulation, although not increased proliferation. Although the number of myeloid-derived suppressor cells was increased in the lungs with metastatic tumors of Bcl11b(F/F)/CD4-Cre mice, their arginase-1 levels were severely reduced. The increase in NK cell and myeloid-derived suppressor cell numbers was associated with increased bone marrow and splenic hematopoiesis. Finally, the reduced tumor burden, increased numbers of NK cells in the lung, and increased hematopoiesis in Bcl11b(F/F)/CD4-Cre mice were all dependent on TNF-α. Moreover, TNF-α treatment of wild-type mice also reduced the tumor burden and increased hematopoiesis and the numbers and activity of NK cells in the lung. In vitro treatment with TNF-α of lineage-negative hematopoietic progenitors increased NK and myeloid differentiation, further supporting a role of TNF-α in promoting hematopoiesis. These studies reveal a novel role for TNF-α in the antitumor immune response, specifically in stimulating hematopoiesis and increasing the numbers and activity of NK cells.


Assuntos
Melanoma/imunologia , Melanoma/patologia , Proteínas Repressoras/metabolismo , Linfócitos T Reguladores/imunologia , Carga Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antígenos Ly/metabolismo , Arginase/metabolismo , Linfócitos T CD8-Positivos/imunologia , Degranulação Celular/imunologia , Proliferação de Células , Deleção de Genes , Granzimas/metabolismo , Hematopoese , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Transgênicos , Células Mieloides/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Repressoras/genética , Baço/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas Supressoras de Tumor/genética , Regulação para Cima
12.
J Immunol ; 190(9): 4725-35, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23526822

RESUMO

Hematopoietic stem and progenitor cell (HSPC) phenotype and function can change in response to infectious challenge. These changes can be mediated by cytokines, IFNs, and pathogen-associated molecules, via TLR, and are thought to promote tailored immune responses for particular pathogens. In this study, we investigated the signals that activate HSPCs during ehrlichiosis, a disease characterized by profound hematopoietic dysfunction in both humans and mice. In a mouse model of ehrlichiosis, we observed that infection-induced proliferation of bone marrow HSPCs was dependent on IFN-γ signaling and was partially dependent on MyD88. However, MyD88 was not required in HSPCs for their expansion during infection, because similar frequencies of MyD88-deficient and wild-type HSPCs proliferated in mixed bone marrow chimeric mice. MyD88-deficient mice exhibited low serum and bone marrow concentration of IFN-γ compared with wild-type mice. We next identified CD4 T cells as the primary cells producing IFN-γ in the bone marrow and demonstrated a nonredundant role for CD4-derived IFN-γ in increased HSPCs. Using mixed bone marrow chimeric mice, we identified a requirement for MyD88 in CD4 T cells for increased T-bet expression, optimal IFN-γ production, and CD4 T cell proliferation. Our data demonstrate an essential role for CD4 T cells in mediating HSPC activation in response to bacterial infection and illustrate a novel role for MyD88 signaling in CD4 T cells in this process. These findings further support the idea that IFN-γ production is essential for HSPC activation and hematopoietic responses to infection.


Assuntos
Infecções Bacterianas/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Interferon gama/biossíntese , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/microbiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Proliferação de Células , Ehrlichia/imunologia , Ehrlichiose/imunologia , Ehrlichiose/metabolismo , Ehrlichiose/microbiologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/microbiologia , Interferon gama/imunologia , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/imunologia
13.
Proc Natl Acad Sci U S A ; 108(15): 6211-6, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444811

RESUMO

Invariant natural killer T cells (iNKT cells) are innate-like T cells important in immune regulation, antimicrobial protection, and anti-tumor responses. They express semi-invariant T cell receptors, which recognize glycolipid antigens. Their positive selection is mediated by double-positive (DP) thymocytes, which present glycolipid self-antigens through the noncanonical MHC class I-like molecule CD1d. Here we provide genetic and biochemical evidence that removal of the transcription factor Bcl11b in DP thymocytes leads to an early block in iNKT cell development, caused by both iNKT cell extrinsic and intrinsic defects. Specifically, Bcl11b-deficient DP thymocytes failed to support Bcl11b-sufficient iNKT precursor development due to defective glycolipid self-antigen presentation, and showed enlarged lysosomes and accumulation of glycosphingolipids. Expression of genes encoding lysosomal proteins with roles in sphingolipid metabolism and glycolipid presentation was found to be altered in Bcl11b-deficient DP thymocytes. These include cathepsins and Niemann-Pick disease type A, B, and C genes. Thus, Bcl11b plays a central role in presentation of glycolipid self-antigens by DP thymocytes, and regulates directly or indirectly expression of lysosomal genes, exerting a critical extrinsic role in development of iNKT lineage, in addition to the intrinsic role in iNKT precursors. These studies demonstrate a unique and previously undescribed role of Bcl11b in DP thymocytes, in addition to the critical function in positive selection of conventional CD4 and CD8 single-positive thymocytes.


Assuntos
Apresentação de Antígeno/genética , Autoantígenos/imunologia , Glicolipídeos/imunologia , Células T Matadoras Naturais/imunologia , Proteínas Repressoras/metabolismo , Linfócitos T/imunologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Autoantígenos/análise , Autoantígenos/genética , Regulação da Expressão Gênica , Glicolipídeos/análise , Glicolipídeos/genética , Camundongos , Camundongos Mutantes , Proteínas/genética , Proteínas Repressoras/genética , Seleção Genética , Proteínas Supressoras de Tumor/genética
14.
Front Immunol ; 15: 1353570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646527

RESUMO

Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.


Assuntos
Células Dendríticas , Fucose , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Camundongos , Fucose/metabolismo , Apresentação de Antígeno , Feminino , Camundongos Endogâmicos C57BL , Polaridade Celular , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Melanoma Experimental/imunologia , Ativação Linfocitária/imunologia
15.
Biomaterials ; 294: 122001, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716589

RESUMO

Antigen-specific therapies allow for modulation of the immune system in a disease relevant context without systemic immune suppression. These therapies are especially valuable in autoimmune diseases such as multiple sclerosis (MS), where autoreactive T cells destroy myelin sheath. This work shows that an antigen-specific dual-sized microparticle (dMP) system can effectively halt and reverse disease progression in a mouse model of MS. Current MS treatments leave patients immunocompromised, but the dMP formulation spares the immune system as mice can successfully clear a Listeria Monocytogenes infection. Furthermore, we highlight design principles for particle based immunotherapies including the importance of delivering factors specific for immune cell recruitment (GM-CSF or SDF-1), differentiation (GM-CSF or FLT3L) and suppression (TGF-ß or VD3) in conjunction with disease relevant antigen, as the entire formulation is required for maximum efficacy. Lastly, the dMP scheme relies on formulating phagocytosable and non-phagocytosable MP sizes to direct payload to target either cell surface receptors or intracellular targets, as the reverse sized dMP formulation failed to reverse paralysis. We also challenge the design principles of the dMP system showing that the size of the MPs impact efficacy and that GM-CSF plays two distinct roles and that both of these must be replaced to match the primary effect of the dMP system. Overall, this work shows the versatile nature of the dMP system and expands the knowledge in particle science by emphasizing design tenets to guide the next generation of particle based immunotherapies.


Assuntos
Doenças Autoimunes , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Esclerose Múltipla/terapia , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Antígenos , Linfócitos T
16.
Cell Rep ; 42(1): 111963, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640340

RESUMO

The Aryl hydrocarbon receptor (Ahr) regulates the differentiation and function of CD4+ T cells; however, its cell-intrinsic role in CD8+ T cells remains elusive. Herein we show that Ahr acts as a promoter of resident memory CD8+ T cell (TRM) differentiation and function. Genetic ablation of Ahr in mouse CD8+ T cells leads to increased CD127-KLRG1+ short-lived effector cells and CD44+CD62L+ T central memory cells but reduced granzyme-B-producing CD69+CD103+ TRM cells. Genome-wide analyses reveal that Ahr suppresses the circulating while promoting the resident memory core gene program. A tumor resident polyfunctional CD8+ T cell population, revealed by single-cell RNA-seq, is diminished upon Ahr deletion, compromising anti-tumor immunity. Human intestinal intraepithelial CD8+ T cells also highly express AHR that regulates in vitro TRM differentiation and granzyme B production. Collectively, these data suggest that Ahr is an important cell-intrinsic factor for CD8+ T cell immunity.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Humanos , Animais , Camundongos , Receptores de Hidrocarboneto Arílico/genética , Estudo de Associação Genômica Ampla , Diferenciação Celular
17.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615936

RESUMO

Clonal hematopoiesis (CH) is defined as clonal expansion of mutant hematopoietic stem cells absent diagnosis of a hematologic malignancy. Presence of CH in solid tumor patients, including colon cancer, correlates with shorter survival. We hypothesized that bone marrow-derived cells with heterozygous loss-of-function mutations of DNMT3A, the most common genetic alteration in CH, contribute to the pathogenesis of colon cancer. In a mouse model that combines colitis-associated colon cancer (CAC) with experimental CH driven by Dnmt3a+/Δ, we found higher tumor penetrance and increased tumor burden compared with controls. Histopathological analysis revealed accentuated colonic epithelium injury, dysplasia, and adenocarcinoma formation. Transcriptome profiling of colon tumors identified enrichment of gene signatures associated with carcinogenesis, including angiogenesis. Treatment with the angiogenesis inhibitor axitinib eliminated the colon tumor-promoting effect of experimental CH driven by Dnmt3a haploinsufficiency and rebalanced hematopoiesis. This study provides conceptually novel insights into non-tumor-cell-autonomous effects of hematopoietic alterations on colon carcinogenesis and identifies potential therapeutic strategies.


Assuntos
Neoplasias Associadas a Colite , Neoplasias do Colo , Animais , Camundongos , Carcinogênese , Neoplasias do Colo/genética , Perda de Heterozigosidade , Mutação
18.
Nat Biomed Eng ; 7(9): 1156-1169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37127708

RESUMO

The treatment of chronic inflammation with systemically administered anti-inflammatory treatments is associated with moderate-to-severe side effects, and the efficacy of locally administered drugs is short-lived. Here we show that inflammation can be locally suppressed by a fusion protein of the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO) and galectin-3 (Gal3). Gal3 anchors IDO to tissue, limiting the diffusion of IDO-Gal3 away from the injection site. In rodent models of endotoxin-induced inflammation, psoriasis, periodontal disease and osteoarthritis, the fusion protein remained in the inflamed tissues and joints for about 1 week after injection, and the amelioration of local inflammation, disease progression and inflammatory pain in the animals were concomitant with homoeostatic preservation of the tissues and with the absence of global immune suppression. IDO-Gal3 may serve as an immunomodulatory enzyme for the control of focal inflammation in other inflammatory conditions.


Assuntos
Galectina 2 , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Progressão da Doença
19.
Sci Immunol ; 8(82): eabn0484, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115913

RESUMO

The networks of transcription factors (TFs) that control intestinal-resident memory CD8+ T (TRM) cells, including multipotency and effector programs, are poorly understood. In this work, we investigated the role of the TF Bcl11b in TRM cells during infection with Listeria monocytogenes using mice with post-activation, conditional deletion of Bcl11b in CD8+ T cells. Conditional deletion of Bcl11b resulted in increased numbers of intestinal TRM cells and their precursors as well as decreased splenic effector and circulating memory cells and precursors. Loss of circulating memory cells was in part due to increased intestinal homing of Bcl11b-/- circulating precursors, with no major alterations in their programs. Bcl11b-/- TRM cells had altered transcriptional programs, with diminished expression of multipotent/multifunctional (MP/MF) program genes, including Tcf7, and up-regulation of the effector program genes, including Prdm1. Bcl11b also limits the expression of Ahr, another TF with a role in intestinal CD8+ TRM cell differentiation. Deregulation of TRM programs translated into a poor recall response despite TRM cell accumulation in the intestine. Reduced expression of MP/MF program genes in Bcl11b-/- TRM cells was linked to decreased chromatin accessibility and a reduction in activating histone marks at these loci. In contrast, the effector program genes displayed increased activating epigenetic status. These findings demonstrate that Bcl11b is a frontrunner in the tissue residency program of intestinal memory cells upstream of Tcf1 and Blimp1, promoting multipotency and restricting the effector program.


Assuntos
Linfócitos T CD8-Positivos , Fatores de Transcrição , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular , Intestinos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
20.
iScience ; 24(4): 102307, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870128

RESUMO

Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1 and play role in immune responses to microbial infections and tumors. We report here that absence of the transcription factor (TF) Bcl11b in mice alters predominantly MAIT17 cells in the thymus and further in the lung, both at steady state and following Salmonella infection. Transcriptomics and ChIP-seq analyses show direct control of TCR signaling program and position BCL11B upstream of essential TFs of MAIT17 program, including RORγt, ZBTB16 (PLZF), and MAF. BCL11B binding at key MAIT17 and at TCR signaling program genes in human MAIT cells occurred mostly in regions enriched for H3K27Ac. Unexpectedly, in human MAIT cells, BCL11B also bound at MAIT1 program genes, at putative active enhancers, although this program was not affected in mouse MAIT cells in the absence of Bcl11b. These studies endorse BCL11B as an essential TF for MAIT cells both in mice and humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA