Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 27(1): 17-28, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30527757

RESUMO

Improved therapy of cancer has significantly increased the lifespan of patients. However, cancer survivors face an increased risk of cardiovascular complications due to adverse effects of cancer therapies. The chemotherapy drug doxorubicin is well known to induce myofibril damage and cardiac atrophy. Our aim was to test potential counteracting effects of the pro-hypertrophic miR-212/132 family in doxorubicin-induced cardiotoxicity. In vitro, overexpression of the pro-hypertrophic miR-212/132 cluster in primary rodent and human iPSC-derived cardiomyocytes inhibited doxorubicin-induced toxicity. Next, a disease model of doxorubicin-induced cardiotoxicity was established in male C57BL/6N mice. Mice were administered either adeno-associated virus (AAV)9-control or AAV9-miR-212/132 to achieve myocardial overexpression of the miR-212/132 cluster. AAV9-mediated overexpression limited cardiac atrophy by increasing left ventricular mass and wall thickness, decreased doxorubicin-mediated apoptosis, and prevented myofibril damage. Based on a transcriptomic profiling we identified fat storage-inducing transmembrane protein 2 (Fitm2) as a novel target and downstream effector molecule responsible, at least in part, for the observed miR-212/132 anti-cardiotoxic effects. Overexpression of Fitm2 partially reversed the effects of miR-212/132. Overexpression of the miR-212/132 family reduces development of doxorubicin-induced cardiotoxicity and thus could be a therapeutic entry point to limit doxorubicin-mediated adverse cardiac effects.


Assuntos
Doxorrubicina/efeitos adversos , MicroRNAs/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Cardiotoxicidade , Caspase 3/metabolismo , Caspase 7/metabolismo , Dependovirus/genética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos
2.
Nat Commun ; 13(1): 220, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017523

RESUMO

Abnormalities of ventricular action potential cause malignant cardiac arrhythmias and sudden cardiac death. Here, we aim to identify microRNAs that regulate the human cardiac action potential and ask whether their manipulation allows for therapeutic modulation of action potential abnormalities. Quantitative analysis of the microRNA targetomes in human cardiac myocytes identifies miR-365 as a primary microRNA to regulate repolarizing ion channels. Action potential recordings in patient-specific induced pluripotent stem cell-derived cardiac myocytes show that elevation of miR-365 significantly prolongs action potential duration in myocytes derived from a Short-QT syndrome patient, whereas specific inhibition of miR-365 normalizes pathologically prolonged action potential in Long-QT syndrome myocytes. Transcriptome analyses in these cells at bulk and single-cell level corroborate the key cardiac repolarizing channels as direct targets of miR-365, together with functionally synergistic regulation of additional action potential-regulating genes by this microRNA. Whole-cell patch-clamp experiments confirm miR-365-dependent regulation of repolarizing ionic current Iks. Finally, refractory period measurements in human myocardial slices substantiate the regulatory effect of miR-365 on action potential in adult human myocardial tissue. Our results delineate miR-365 to regulate human cardiac action potential duration by targeting key factors of cardiac repolarization.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/metabolismo , MicroRNAs/metabolismo , Arritmias Cardíacas/genética , Perfilação da Expressão Gênica , Células HEK293 , Ventrículos do Coração/fisiopatologia , Humanos , Síndrome do QT Longo/genética , MicroRNAs/genética , Miocárdio , Miócitos Cardíacos
3.
Nat Protoc ; 17(4): 1142-1188, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288718

RESUMO

Genetically engineered mouse models (GEMMs) transformed the study of organismal disease phenotypes but are limited by their lengthy generation in embryonic stem cells. Here, we describe methods for rapid and scalable genome engineering in somatic cells of the liver and pancreas through delivery of CRISPR components into living mice. We introduce the spectrum of genetic tools, delineate viral and nonviral CRISPR delivery strategies and describe a series of applications, ranging from gene editing and cancer modeling to chromosome engineering or CRISPR multiplexing and its spatio-temporal control. Beyond experimental design and execution, the protocol describes quantification of genetic and functional editing outcomes, including sequencing approaches, data analysis and interpretation. Compared to traditional knockout mice, somatic GEMMs face an increased risk for mouse-to-mouse variability because of the higher experimental demands of the procedures. The robust protocols described here will help unleash the full potential of somatic genome manipulation. Depending on the delivery method and envisaged application, the protocol takes 3-5 weeks.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias , Animais , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Fígado , Camundongos , Camundongos Knockout , Neoplasias/genética , Pâncreas
4.
J Cell Biol ; 220(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33538762

RESUMO

Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon-glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates axon remodeling and myelination.


Assuntos
Axônios , Neurônios Motores/metabolismo , Bainha de Mielina/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Transmissão Sináptica
5.
Nat Commun ; 8(1): 1614, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158499

RESUMO

Chronic cardiac stress induces pathologic hypertrophy and fibrosis of the myocardium. The microRNA-29 (miR-29) family has been found to prevent excess collagen expression in various organs, particularly through its function in fibroblasts. Here, we show that miR-29 promotes pathologic hypertrophy of cardiac myocytes and overall cardiac dysfunction. In a mouse model of cardiac pressure overload, global genetic deletion of miR-29 or antimiR-29 infusion prevents cardiac hypertrophy and fibrosis and improves cardiac function. Targeted deletion of miR-29 in cardiac myocytes in vivo also prevents cardiac hypertrophy and fibrosis, indicating that the function of miR-29 in cardiac myocytes dominates over that in non-myocyte cell types. Mechanistically, we found cardiac myocyte miR-29 to de-repress Wnt signaling by directly targeting four pathway factors. Our data suggests that, cell- or tissue-specific antimiR-29 delivery may have therapeutic value for pathological cardiac remodeling and fibrosis.


Assuntos
Cardiomegalia/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Wnt/metabolismo , Adulto , Idoso , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais , Proteínas Wnt/genética
6.
Sci Transl Med ; 8(326): 326ra22, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888430

RESUMO

Recent studies highlighted long noncoding RNAs (lncRNAs) to play an important role in cardiac development. However, understanding of lncRNAs in cardiac diseases is still limited. Global lncRNA expression profiling indicated that several lncRNA transcripts are deregulated during pressure overload-induced cardiac hypertrophy in mice. Using stringent selection criteria, we identified Chast (cardiac hypertrophy-associated transcript) as a potential lncRNA candidate that influences cardiomyocyte hypertrophy. Cell fractionation experiments indicated that Chast is specifically up-regulated in cardiomyocytes in vivo in transverse aortic constriction (TAC)-operated mice. In accordance, CHAST homolog in humans was significantly up-regulated in hypertrophic heart tissue from aortic stenosis patients and in human embryonic stem cell-derived cardiomyocytes upon hypertrophic stimuli. Viral-based overexpression of Chast was sufficient to induce cardiomyocyte hypertrophy in vitro and in vivo. GapmeR-mediated silencing of Chast both prevented and attenuated TAC-induced pathological cardiac remodeling with no early signs on toxicological side effects. Mechanistically, Chast negatively regulated Pleckstrin homology domain-containing protein family M member 1 (opposite strand of Chast), impeding cardiomyocyte autophagy and driving hypertrophy. These results indicate that Chast can be a potential target to prevent cardiac remodeling and highlight a general role of lncRNAs in heart diseases.


Assuntos
RNA Longo não Codificante/metabolismo , Remodelação Ventricular/genética , Animais , Sequência de Bases , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Pressão , RNA Longo não Codificante/genética , Transdução de Sinais , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA