Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(1): e0132923, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112445

RESUMO

Common sterilization techniques for labile and sensitive materials have far-reaching applications in medical, pharmaceutical, and industrial fields. Heat inactivation, chemical treatment, and radiation are established methods to inactivate microorganisms, but pose a threat to humans and the environment and can damage susceptible materials or products. Recent studies have demonstrated that cold low-pressure plasma (LPP) treatment is an efficient alternative to common sterilization methods, as LPP's levels of radicals, ions, (V)UV-radiation, and exposure to an electromagnetic field can be modulated using different process gases, such as oxygen, nitrogen, argon, or synthetic (ambient) air. To further investigate the effects of LPP, spores of the Gram-positive model organism Bacillus subtilis were tested for their LPP susceptibility including wild-type spores and isogenic spores lacking DNA-repair mechanisms such as non-homologous end-joining (NHEJ) or abasic endonucleases, and protective proteins like α/ß-type small acid-soluble spore proteins (SASP), coat proteins, and catalase. These studies aimed to learn how spores resist LPP damage by examining the roles of key spore proteins and DNA-repair mechanisms. As expected, LPP treatment decreased spore survival, and survival after potential DNA damage generated by LPP involved efficient DNA repair following spore germination, spore DNA protection by α/ß-type SASP, and catalase breakdown of hydrogen peroxide that can generate oxygen radicals. Depending on the LPP composition and treatment time, LPP treatment offers another method to efficiently inactivate spore-forming bacteria.IMPORTANCESurface-associated contamination by endospore-forming bacteria poses a major challenge in sterilization, since the omnipresence of these highly resistant spores throughout nature makes contamination unavoidable, especially in unprocessed foods. Common bactericidal agents such as heat, UV and γ radiation, and toxic chemicals such as strong oxidizers: (i) are often not sufficient to completely inactivate spores; (ii) can pose risks to the applicant; or (iii) can cause unintended damage to the materials to be sterilized. Cold low-pressure plasma (LPP) has been proposed as an additional method for spore eradication. However, efficient use of LPP in decontamination requires understanding of spores' mechanisms of resistance to and protection against LPP.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Humanos , Bacillus subtilis/genética , Catalase/metabolismo , Esporos Bacterianos/fisiologia , Esterilização/métodos , Proteínas/metabolismo , Temperatura Alta , DNA/metabolismo
2.
Small ; 16(22): e1907506, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32346997

RESUMO

The identification of bis-3-(N,N-dimethylamino)propyl zinc ([Zn(DMP)2 ], BDMPZ) as a safe and potential alternative to the highly pyrophoric diethyl zinc (DEZ) as atomic layer deposition (ALD) precursor for ZnO thin films is reported. Owing to the intramolecular stabilization, BDMPZ is a thermally stable, volatile, nonpyrophoric solid compound, however, it possesses a high reactivity due to the presence of Zn-C and Zn-N bonds in this complex. Employing this precursor, a new oxygen plasma enhanced (PE)ALD process in the deposition temperature range of 60 and 160 °C is developed. The resulting ZnO thin films are uniform, smooth, stoichiometric, and highly transparent. The deposition on polyethylene terephthalate (PET) at 60 °C results in dense and compact ZnO layers for a thickness as low as 7.5 nm with encouraging oxygen transmission rates (OTR) compared to the bare PET substrates. As a representative application of the ZnO layers, the gas sensing properties are investigated. A high response toward NO2 is observed without cross-sensitivities against NH3 and CO. Thus, the new PEALD process employing BDMPZ has the potential to be a safe substitute to the commonly used DEZ processes.

3.
Chemistry ; 25(31): 7489-7500, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-30870572

RESUMO

New precursor chemistries for the atomic layer deposition (ALD) of aluminium oxide are reported as potential alternatives to the pyrophoric trimethylaluminium (TMA) which is to date a widely used Al precursor. Combining the high reactivity of aluminium alkyls employing the 3-(dimethylamino)propyl (DMP) ligand with thermally stable amide ligands yielded three new heteroleptic, non-pyrophoric compounds [Al(NMe2 )2 (DMP)] (2), [Al(NEt2 )2 (DMP)] (3, BDEADA) and [Al(NiPr2 )2 (DMP)] (4), which combine the properties of both ligand systems. The compounds were synthesized and thoroughly chemically characterized, showing the intramolecular stabilization of the DMP ligand as well as only reactive Al-C and Al-N bonds, which are the key factors for the thermal stability accompanied by a sufficient reactivity, both being crucial for ALD precursors. Upon rational variation of the amide alkyl chains, tunable and high evaporation rates accompanied by thermal stability were found, as revealed by thermal evaluation. In addition, a new and promising plasma enhanced (PE)ALD process using BDEADA and oxygen plasma in a wide temperature range from 60 to 220 °C is reported and compared to that of a modified variation of the TMA, namely [AlMe2 (DMP)] (DMAD). The resulting Al2 O3 layers are of high density, smooth, uniform, and of high purity. The applicability of the Al2 O3 films as effective gas barrier layers (GBLs) was successfully demonstrated, considering that coating on polyethylene terephthalate (PET) substrates yielded very good oxygen transmission rates (OTR) with an improvement factor of 86 for a 15 nm film by using DMAD and a factor of 25 for a film thickness of just 5 nm by using BDEDA compared to bare PET substrates. All these film attributes are of the same quality as those obtained for the industrial precursor TMA, rendering the new precursors safe and potential alternatives to TMA.

4.
Chemistry ; 23(45): 10768-10772, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28665519

RESUMO

Identification and synthesis of intramolecularly donor-stabilized aluminium(III) complexes, which contain a 3-(dimethylamino)propyl (DMP) ligand, as novel atomic layer deposition (ALD) precursors has enabled the development of new and promising ALD processes for Al2 O3 thin films at low temperatures. Key for this promising outcome is the nature of the ligand combination that leads to heteroleptic Al complexes encompassing optimal volatility, thermal stability and reactivity. The first ever example of the application of this family of Al precursors for ALD is reported here. The process shows typical ALD like growth characteristics yielding homogeneous, smooth and high purity Al2 O3 thin films that are comparable to Al2 O3 layers grown by well-established, but highly pyrophoric, trimethylaluminium (TMA)-based ALD processes. This is a significant development based on the fact that these compounds are non-pyrophoric in nature and therefore should be considered as an alternative to the industrial TMA-based Al2 O3 ALD process used in many technological fields of application.

5.
Appl Environ Microbiol ; 82(7): 2031-2038, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801572

RESUMO

Novel decontamination technologies, including cold low-pressure plasma and blue light (400 nm), are promising alternatives to conventional surface decontamination methods. However, the standardization of the assessment of such sterilization processes remains to be accomplished. Bacterial endospores of the genera Bacillus and Geobacillus are frequently used as biological indicators (BIs) of sterility. Ensuring standardized and reproducible BIs for reliable testing procedures is a significant problem in industrial settings. In this study, an electrically driven spray deposition device was developed, allowing fast, reproducible, and homogeneous preparation of Bacillus subtilis 168 spore monolayers on glass surfaces. A detailed description of the structural design as well as the operating principle of the spraying device is given. The reproducible formation of spore monolayers of up to 5 × 10(7) spores per sample was verified by scanning electron microscopy. Surface inactivation studies revealed that monolayered spores were inactivated by UV-C (254 nm), low-pressure argon plasma (500 W, 10 Pa, 100 standard cubic cm per min), and blue light (400 nm) significantly faster than multilayered spores were. We have thus succeeded in the uniform preparation of reproducible, highly concentrated spore monolayers with the potential to generate BIs for a variety of nonpenetrating surface decontamination techniques.


Assuntos
Bacillus subtilis/efeitos da radiação , Descontaminação/métodos , Esporos Bacterianos/efeitos da radiação , Bacillus subtilis/crescimento & desenvolvimento , Descontaminação/instrumentação , Pressão , Esporos Bacterianos/crescimento & desenvolvimento , Raios Ultravioleta
6.
Nitric Oxide ; 44: 52-60, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25435001

RESUMO

Dielectric barrier discharge (DBD) devices generate air plasma above the skin containing active and reactive species including nitric oxide (NO). Since NO plays an essential role in skin physiology, a topical application of NO by plasma may be useful in the treatment of skin infections, impaired microcirculation and wound healing. Thus, after safety assessments of plasma treatment using human skin specimen and substitutes, NO-penetration through the epidermis, the loading of skin tissue with NO-derivates in vitro and the effects on human skin in vivo were determined. After the plasma treatment (0-60 min) of skin specimen or reconstructed epidermis no damaging effects were found (TUNEL/MTT). By Franz diffusion cell experiments plasma-induced NO penetration through epidermis and dermal enrichment with NO related species (nitrite 6-fold, nitrate 7-fold, nitrosothiols 30-fold) were observed. Furthermore, skin surface was acidified (~pH 2.7) by plasma treatment (90 s). Plasma application on the forearms of volunteers increased microcirculation fourfold in 1-2 mm and twofold in 6-8 mm depth in the treated skin areas. Regarding the NO-loading effects, skin acidification and increase in dermal microcirculation, plasma devices represent promising tools against chronic/infected wounds. However, efficacy of plasma treatment needs to be quantified in further studies and clinical trials.


Assuntos
Óxido Nítrico/farmacologia , Gases em Plasma/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Cultura em Câmaras de Difusão , Humanos , Microcirculação , Modelos Biológicos , Nitratos/metabolismo , Óxido Nítrico/farmacocinética , Nitritos/metabolismo , Gases em Plasma/efeitos adversos , Pele/irrigação sanguínea , Pele/química
7.
Biomedicines ; 11(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238913

RESUMO

The micro-scaled Atmospheric Pressure Plasma Jet (µAPPJ) is operated with low carrier gas flows (0.25-1.4 slm), preventing excessive dehydration and osmotic effects in the exposed area. A higher yield of reactive oxygen or nitrogen species (ROS or RNS) in the µAAPJ-generated plasmas (CAP) was achieved, due to atmospheric impurities in the working gas. With CAPs generated at different gas flows, we characterized their impact on physical/chemical changes of buffers and on biological parameters of human skin fibroblasts (hsFB). CAP treatments of buffer at 0.25 slm led to increased concentrations of nitrate (~352 µM), hydrogen peroxide (H2O2; ~124 µM) and nitrite (~161 µM). With 1.40 slm, significantly lower concentrations of nitrate (~10 µM) and nitrite (~44 µM) but a strongly increased H2O2 concentration (~1265 µM) was achieved. CAP-induced toxicity of hsFB cultures correlated with the accumulated H2O2 concentrations (20% at 0.25 slm vs. ~49% at 1.40 slm). Adverse biological consequences of CAP exposure could be reversed by exogenously applied catalase. Due to the possibility of being able to influence the plasma chemistry solely by modulating the gas flow, the therapeutic use of the µAPPJ represents an interesting option for clinical use.

8.
Innov Surg Sci ; 6(3): 97-104, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35224177

RESUMO

OBJECTIVES: Autologous transplants are still the means of choice for bypass surgery. In addition to good tolerability, there is a reduced thrombogenicity and fewer neointima hyperplasia compared to artificial materials. However, since viable transplants are limited, attempts are being made to improve existing artificial vascular prosthesis material. Next to the reduction of thrombogenicity, a rapid endothelialization of the vascular graft should reduce intimal hyperplasia and thus prevent stenoses. The effect of newly developed silicon oxide coatings on the growth of endothelial cells was therefore the goal of this work in a cell culture study. METHODS: A woven, uncoated polyethylene terephthalate (PET) vessel prosthesis was used. The coating process was carried out in a low-pressure plasma reactor in a multi-step process. After preparation of the vacuum chamber hexamethyldisiloxane (HDMSO) with oxygen was evaporated using argon plasma. By this an approx. 1 nm thin adhesion promoter layer was separated from plasma and HMDSO. The silicone oxide barrier layer was applied to the PET vessel samples. The carbon content of the layer could be selectively altered by changing the HMDSO oxygen flow ratio, resulting in coatings of 100 nm, 500 nm, and 1,000 nm. In addition, two different oxygen-to-HMDSO ratios were used. To achieve a carbon coating as low as possible, the ratio was set to 200:1. A carbon-rich layer was obtained with the 1:1 setting. The various coatings were then examined for their surface texture by scanning electron microscopy (SEM) as well as by cell culture experiments for cell viability and growth using EA.hy 926 cells. RESULTS: SEM showed no changes in the surface morphology; however a layer thickness of 1,000 nm showed peeled off coating areas. Alamar blue assays showed a significantly higher metabolic activity (p=0.026) for the coating 500 nm, ratio 200:1 compared to untreated control samples and a significantly lower metabolic activity (p=0.037) of the coating 500 nm, ratio 1:1 compared to the coating 500 nm, ratio 200:1. This underlines the apparent tendency of the 1:1 coating to inhibit the metabolic activity of the cells, while the 200:1 coating increases the activity. Fluorescence microscopy after calcein acetoxymethyl ester (AM) staining showed no significant difference between the different coatings and the uncoated PET material. However, a tendency of the increased surface growth on the coating 500 nm, ratio 200:1, is shown. The coatings with the ratio 1:1 tend to be less densely covered. CONCLUSIONS: The results of this work indicate a great potential in the silicon coating of vascular prosthesis material. The plasma coating can be carried out easy and gently. Cell culture experiments demonstrated a tendency towards better growth of the cells on the 200:1 ratio coating and a poorer growth on the carbon-rich coating 1:1 compared to the uncoated material. The coating with silicon oxide with a thickness of 500 nm and an oxygen-HMDSO ratio of 200:1, a particularly low-carbon layer, appears to be a coating, which should therefore be further investigated for its effects on thrombogenicity and intimal hyperplasia.

9.
J Photochem Photobiol ; 11: 100123, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36034107

RESUMO

Microorganisms pose a serious threat for us humans, which is exemplified by the recent emergence of pathogens such as SARS-CoV-2 or the increasing number of multi-resistant pathogens such as MRSA. To control surface microorganisms and viruses, we investigated the disinfection properties of an AI-controlled robot, HERO21, equipped with eight 130-W low pressure UV-C mercury vapor discharge lamps emitting at a wavelength of 254 nm, which is strongly absorbed by DNA and RNA, thus inactivating illuminated microorganisms. Emissivity and spatial irradiance distribution of a single UV-C lamp unit was determined using a calibrated spectrometer and numerical simulation, respectively. The disinfection efficiency of single lamps is determined by microbiological tests using B. subtilis spores, which are known to be UV-C resistant. The required time for D99 disinfection and the corresponding UV-C irradiance dose amount to 60 s and 37.3 mJ•cm-2 at a distance of 1 m to the Hg-lamp, respectively. Spatially resolved irradiance produced by a disinfection unit consisting of eight lamps is calculated using results of one UV-C lamp characterization. This calculation shows that the UV-C robot HERO21 equipped with the mentioned UV-C unit causes an irradiance at λ=254 nm of 2.67 mJ•cm-2•s-1 at 1 m and 0.29 mJ•cm-2•s-1 at 3 m distances. These values result in D99 disinfection times of 14 s and 129 s for B. subtilis spores, respectively. Similarly, human coronavirus 229E, structurally very similar to SARS-CoV-2, could be efficiently inactivated by 3-5 orders of magnitude within 10 - 30 s exposure time or doses of 2 - 6 mJ•cm-2, respectively. In conclusion, with the development of the HERO21 disinfection robot, we were able to determine the inactivation efficiency of bacteria and viruses on surfaces under laboratory conditions.

10.
Nitric Oxide ; 24(1): 8-16, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20883806

RESUMO

Physical plasmas which contain a mixture of different radicals, charged species and UV-radiation, have recently found entry in various medical applications. Though first clinical trials are underway nothing is known about the plasma components mediating the biological effects seen and safety concerns have been neglected. We here use for the first time a plasma device equipped with a bent quartz capillary to omit UV-radiation by directing the gas flux only, containing high concentrations of NO, onto cultured human skin cells. This enables us to compare the effects of plasma produced radical species alone - mainly NO - and in combination with the also emitted UV-radiation on cells. Evaluation of cell death after different treatment times with the capillary present shows no sign of apoptosis in primary human keratinocytes even after 15 min plasma exposure. In human skin endothelial cells however, toxicity is elevated after treatment for more than 10 min. In contrast, without the capillary treatment of both cell types results in maximal cell death after 10 min. Measuring nitrite and nitrosothiols reveals that plasma-treatment leads to an increase of these NO-products in buffer solution and cell culture medium. Using an intracellular fluorescent NO-probe and analysing the nitrosation status of plasma exposed skin cells we can prove that NO indeed reaches and penetrates into these cells. Non-toxic exposure times modulate proliferation in both cell types used, indicating that the gas species, mainly NO, are biological active.


Assuntos
Óxido Nítrico/farmacologia , Gases em Plasma/farmacologia , Pele/efeitos dos fármacos , Análise de Variância , Apoptose/efeitos dos fármacos , Linhagem Celular Transformada , Proliferação de Células , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Microscopia de Fluorescência , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitritos/análise , Nitritos/química , Nitritos/metabolismo , Compostos Nitrosos/análise , Compostos Nitrosos/química , Compostos Nitrosos/metabolismo , Pele/citologia , Pele/metabolismo , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
11.
Biomed Instrum Technol ; 45(1): 75-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21322816

RESUMO

BACKGROUND: In recent years, plasma treatment of medical devices and implant materials has gained more and more acceptance. Inactivation of microorganisms by exposure to ultraviolet (UV) radiation produced by plasma discharges and sterilization of medical implants and instruments is one possible application of this technique. The aim of this study was to evaluate the effectiveness of this sterilization technique on silicone implant material. METHODS: Bacillus atrophaeus spores (10(6) colony-forming units [CFUs]) were sprayed on the surfaces of 12 silicone implant material samples. Four plasma sets with different gas mixtures (argon [Ar], argon-oxygen [Ar:O(2)], argon-hydrogen [Ar:H(2)] and argon-nitrogen [Ar:N(2)]) were tested for their antimicrobial properties. Post-sterilization mechanical testing of the implant material was performed in order to evaluate possible plasma-induced structural damage. RESULTS: The inductively coupled low-pressure plasma technique can achieve fast and efficient sterilization of silicone implant material without adverse materials effects. All four gas mixtures led to a significant spore reduction, and no structural damage to the implant material could be observed.


Assuntos
Gases em Plasma , Próteses e Implantes/microbiologia , Esterilização/métodos , Argônio , Bacillus/efeitos dos fármacos , Contagem de Colônia Microbiana , Hidrogênio , Nitrogênio , Oxigênio , Pressão , Silicones , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento
12.
Rev Sci Instrum ; 92(10): 103503, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717414

RESUMO

A calibration routine is presented for an array of retarding field energy analyzer (RFEA) sensors distributed across a planar electrode surface with a diameter of 450 mm that is exposed to a low temperature plasma. Such an array is used to measure the ion velocity distribution function at the electrode with radial and azimuthal resolutions as a basis for knowledge-based plasma process development. The presented calibration procedure is tested by exposing such an RFEA array to a large-area capacitively coupled argon plasma driven by two frequencies (13.56 and 27.12 MHz) at a gas pressure of 0.5 Pa. Up to 12 sensors are calibrated with respect to the 13th sensor, called the global reference sensor, by systematically varying the sensor positions across the array. The results show that the uncalibrated radial and azimuthal ion flux profiles are incorrect. The obtained profiles are different depending on the sensor arrangement and exhibit different radial and azimuthal behaviors. Based on the proposed calibration routine, the ion flux profiles can be corrected and a meaningful interpretation of the measured data is possible. The calibration factors are almost independent of the external process parameters, namely, input power, gas pressure, and gas mixture, investigated under large-area single-frequency capacitively coupled plasma conditions (27.12 MHz). Thus, mean calibration factors are determined based on 45 different process conditions and can be used independent of the plasma conditions. The temporal stability of the calibration factors is found to be limited, i.e., the calibration must be repeated periodically.

13.
Sci Rep ; 10(1): 21652, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303899

RESUMO

The plasma-mediated decomposition of volatile organic compounds has previously been investigated in the gas phase with metal oxides as heterogeneous catalysts. While the reactive species in plasma itself are well investigated, very little is known about the influence of metal catalysts in solution. Here, we present initial investigations on the time-dependent plasma-supported oxidation of benzyl alcohol, benzaldehyde and phenol in the presence of molecular iron complexes in solution. Products were identified by HPLC, ESI-MS, FT-IR, and [Formula: see text] spectroscopy. Compared to metal-free oxidation of the substrates, which is caused by reactive oxygen species and leads to a mixture of products, the metal-mediated reactions lead to one product cleanly, and faster than in the metal-free reactions. Most noteworthy, even catalytic amounts of metal complexes induce these clean transformations. The findings described here bear important implications for plasma-supported industrial waste transformations, as well as for plasma-mediated applications in biomedicine, given the fact that iron is the most abundant redox-active metal in the human body.

14.
Biomed Tech (Berl) ; 54(2): 98-106, 2009 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-19335124

RESUMO

BACKGROUND: Plasma treatment leads to a significant change of surface free energy of medical implant materials. These changes strongly influence protein and cell adhesion on the material surface. The aim of the study was to quantify the plasma-induced surface changes and to analyse whether the change of treatment parameters, such as pressure, gas mixture, energy and treatment time, influences the surface free energy of the implant materials. To improve the biocompatibility of the surfaces, polyamino acid coating experiments were performed. MATERIALS AND METHODS: Three different metal implant materials (X2CrNiMo18-15-3, Ti6Al4V, Ti6Al7Nb) were treated with a double-inductively coupled low-pressure plasma. The influence of treatment parameter variation on the surface free energy was evaluated by drop shape analysis. The plasma treated and non-treated materials were incubated in collagen I solution. Afterwards, the coatings were analysed by electron microscopy in terms of structure and adhesion. RESULTS: Drop shape analysis revealed that plasma treatment leads to a significant increase of surface free energy in all groups. Long plasma treatment times and low treatment pressures lead to a significant (p<0.05) extension of the detectable surface free energy increase. Coating experiments showed that only on plasma-treated samples solid and adherent collagen layers could be achieved.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Teste de Materiais , Metais/química , Próteses e Implantes , Adesividade , Gases/química , Temperatura Alta , Plasma/química , Pressão , Propriedades de Superfície
15.
Sci Rep ; 9(1): 18024, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792236

RESUMO

Cold atmospheric pressure plasma is an attractive new research area in clinical trials to treat skin diseases. However, the principles of plasma modification of biomolecules in aqueous solutions remain elusive. It is intriguing how reactive oxygen and nitrogen species (RONS) produced by plasma interact on a molecular level in a biological environment. Previously, we identified the chemical effects of dielectric barrier discharges (DBD) on the glutathione (GSH) and glutathione disulphide (GSSG) molecules as the most important redox pair in organisms responsible for detoxification of intracellular reactive species. However, in the human body there are also present redox-active metals such as iron, which is the most abundant transition metal in healthy humans. In the present study, the time-dependent chemical modifications on GSH and GSSG in the presence of iron(II) and iron(III) complexes caused by a dielectric barrier discharge (DBD) under ambient conditions were investigated by IR spectroscopy, mass spectrometry and High Performance Liquid Chromatography (HPLC). HPLC chromatograms revealed one clean peak after treatment of both GSH and GSSH with the dielectric barrier discharge (DBD) plasma, which corresponded to glutathione sulfonic acid GSO3H. The ESI-MS measurements confirmed the presence of glutathione sulfonic acid. In our experiments, involving either iron(II) or iron(III) complexes, glutathione sulfonic acid GSO3H appeared as the main oxidation product. This is in sharp contrast to GSH/GSSG treatment with DBD plasma in the absence of metal ions, which gave a wild mixture of products. Also interesting, no nitrosylation of GSH/GSSG was oberved in the presence of iron complexes, which seems to indicate a preferential oxygen activation chemistry by this transition metal ion.

16.
ACS Comb Sci ; 21(12): 782-793, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31689080

RESUMO

Cr-Al-N thin film materials libraries were synthesized by combinatorial reactive high power impulse magnetron sputtering (HiPIMS). Different HiPIMS repetition frequencies and peak power densities were applied altering the ion to growth flux ratio. Moreover, time-resolved ion energy distribution functions were measured with a retarding field energy analyzer (RFEA). The plasma properties were measured during the growth of films with different compositions within the materials library and correlated to the resulting film properties such as phase, grain size, texture, indentation modulus, indentation hardness, and residual stress. The influence of the ion to growth flux ratio on the film properties was most significant for films with high Al-content (xAl = 50 at. %). X-ray diffraction with a 2D detector revealed hcp-AlN precipitation starting from Al-concentration xAl ≥ 50 at. %. This precipitation might be related to the kinetically enhanced adatom mobility for a high ratio of ions per deposited atoms, leading to strong intermixing of the deposited species. A structure zone transition, induced by composition and flux ratio JI/JG, from zone T to zone Ic structure was observed which hints toward the conclusion that the combination of increasing flux ratio and Al-concentration lead to opposing trends regarding the increase in homologous temperature.


Assuntos
Alumínio/química , Cromo/química , Nitrogênio/química , Técnicas de Química Combinatória , Teste de Materiais , Estresse Mecânico
17.
J R Soc Interface ; 16(155): 20180966, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31213177

RESUMO

Non-equilibrium atmospheric-pressure plasmas are an alternative means to sterilize and disinfect. Plasma-mediated protein aggregation has been identified as one of the mechanisms responsible for the antibacterial features of plasma. Heat shock protein 33 (Hsp33) is a chaperone with holdase function that is activated when oxidative stress and unfolding conditions coincide. In its active form, it binds unfolded proteins and prevents their aggregation. Here we analyse the influence of plasma on the structure and function of Hsp33 of Escherichia coli using a dielectric barrier discharge plasma. While most other proteins studied so far were rapidly inactivated by atmospheric-pressure plasma, exposure to plasma activated Hsp33. Both, oxidation of cysteine residues and partial unfolding of Hsp33 were observed after plasma treatment. Plasma-mediated activation of Hsp33 was reversible by reducing agents, indicating that cysteine residues critical for regulation of Hsp33 activity were not irreversibly oxidized. However, the reduction yielded a protein that did not regain its original fold. Nevertheless, a second round of plasma treatment resulted again in a fully active protein that was unfolded to an even higher degree. These conformational states were not previously observed after chemical activation with HOCl. Thus, although we could detect the formation of HOCl in the liquid phase during plasma treatment, we conclude that other species must be involved in plasma activation of Hsp33. E. coli cells over-expressing the Hsp33-encoding gene hslO from a plasmid showed increased survival rates when treated with plasma while an hslO deletion mutant was hypersensitive emphasizing the importance of protein aggregation as an inactivation mechanism of plasma.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Gases em Plasma/química , Agregados Proteicos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Oxirredução
18.
J Food Prot ; 71(10): 2119-23, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18939764

RESUMO

A low-pressure microwave plasma reactor was developed for sterilization of polyethylene terephthalate (PET) bottles. In contrast to the established method using aseptic filling machines based on toxic sterilants, here a microwave plasma is ignited inside a bottle by using a gas mixture of nitrogen, oxygen, and hydrogen. To that effect, a reactor setup was developed based on a Plasmaline antenna allowing for plasma ignition inside three-dimensional packages. A treatment time below 5 s is provided for a reduction of 10(5) and 10(4) CFU of Bacillus atrophaeus and Aspergillus niger, respectively, verified by means of a count reduction test. The sterilization results obtained by means of this challenge test are in accordance with requirements for aseptic packaging machines as defined by the U.S. Food and Drug Administration and the German Engineering Federation. The plasma sterilization process developed here for aseptic filling of beverages is a dry process that avoids residues and the use of maximum allowable concentrations of established sterilants, e.g., hydrogen peroxide.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Bacillus/crescimento & desenvolvimento , Desinfetantes/farmacologia , Embalagem de Alimentos/métodos , Micro-Ondas , Polietilenotereftalatos/efeitos da radiação , Esterilização/métodos , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Concentração Máxima Permitida , Plasma , Polietilenotereftalatos/química , Pressão
19.
Biomed Tech (Berl) ; 53(4): 199-203, 2008 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-18643713

RESUMO

The potential of plasma treatment in medicine is only slowly gaining acceptance. Inactivation of germs through exposure to UV radiation produced by plasma discharges and sterilization of medical implant devices and instruments is one possible application of this technique. In addition, due to the manifold possibilities of coating through plasma processes, quick sterilization-coating combinations of medical implant devices are possible. To analyze the effectiveness of this sterilization process on different material surfaces, three different alloys (X2CrNiMo18-15-3, Ti6Al7Nb and Ti6Al4V) and one thermoplastic material (ultra-high molecular weight polyethylene, UHMWPE), commonly used in medical implant devices, were examined in the presented study. After spraying Bacillus atrophaeus spores (10(6) CFU) on the surfaces of four different implant materials tested in this study (X2CrNiMo18-15-3, UHMWPE, Ti6Al7Nb and Ti6Al4V), it was demonstrated in each of four gas mixtures used (Ar, Ar:O2, Ar:H2 and Ar:N2) that due to the application of inductively coupled low-pressure plasma technique, plain medical implant materials can be sterilized rapidly, and can be protective and efficient.


Assuntos
Bacillus , Contaminação de Equipamentos/prevenção & controle , Temperatura Alta , Próteses e Implantes/microbiologia , Esterilização/métodos , Pressão
20.
ACS Appl Mater Interfaces ; 10(8): 7422-7434, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29338170

RESUMO

A study on the plasma-enhanced atomic layer deposition of amorphous inorganic oxides SiO2 and Al2O3 on polypropylene (PP) was carried out with respect to growth taking place at the interface of the polymer substrate and the thin film employing in situ quartz-crystal microbalance (QCM) experiments. A model layer of spin-coated PP (scPP) was deposited on QCM crystals prior to depositions to allow a transfer of findings from QCM studies to industrially applied PP foil. The influence of precursor choice (trimethylaluminum (TMA) vs [3-(dimethylamino)propyl]-dimethyl aluminum (DMAD)) and of plasma pretreatment on the monitored QCM response was investigated. Furthermore, dyads of SiO2/Al2O3, using different Al precursors for the Al2O3 thin-film deposition, were investigated regarding their barrier performance. Although the growth of SiO2 and Al2O3 from TMA on scPP is significantly hindered if no oxygen plasma pretreatment is applied to the scPP prior to depositions, the DMAD process was found to yield comparable Al2O3 growth directly on scPP similar to that found on a bare QCM crystal. From this, the interface formed between the Al2O3 and the PP substrate is suggested to be different for the two precursors TMA and DMAD due to different growth modes. Furthermore, the residual stress of the thin films influences the barrier properties of SiO2/Al2O3 dyads. Dyads composed of 5 nm Al2O3 (DMAD) + 5 nm SiO2 exhibit an oxygen transmission rate (OTR) of 57.4 cm3 m-2 day-1, which correlates with a barrier improvement factor of 24 against 5 when Al2O3 from TMA is applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA