Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 10519, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601306

RESUMO

The Nconga Formation of the Mesoarchean (~2.96-2.84 Ga) Mozaan Group of the Pongola Supergroup of southern Africa contains the world's oldest known granular iron formation. Three dimensional reconstructions of the granules using micro-focus X-ray computed tomography reveal that these granules are microstromatolites coated by magnetite and calcite, and can therefore be classified as oncoids. The reconstructions also show damage to the granule coatings caused by sedimentary transport during formation of the granules and eventual deposition as density currents. The detailed, three dimensional morphology of the granules in conjunction with previously published geochemical and isotope data indicate a biogenic origin for iron precipitation around chert granules on the shallow shelf of one of the oldest supracratonic environments on Earth almost three billion years ago. It broadens our understanding of biologically-mediated iron precipitation during the Archean by illustrating that it took place on the shallow marine shelf coevally with deeper water, below-wave base iron precipitation in micritic iron formations.

2.
Astrobiology ; 19(9): 1075-1102, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335163

RESUMO

Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas , Ciclo do Carbono , Planeta Terra , Compostos Férricos/análise , Minerais/análise , Ciclo do Nitrogênio , Incerteza
4.
Appl Spectrosc ; 60(10): 1111-20, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17059662

RESUMO

In situ infrared (IR) and Raman microspectroscopy have been conducted on Neoproterozoic, organic-walled microfossils (prokaryotic fossils) in doubly polished, petrographic thin sections in order to detect their spectral signatures. The microfossils are very well preserved and occur in black chert from the approximately 850 million-year-old Bitter Springs Formation, Northern Territory, Australia. Raman microspectroscopy on two species of microfossils, one a filament and the other a coccoid, shows disordered peaks (D peak, 1340 cm(-1)) and graphite peaks (G peak, 1600 cm(-1)), indicating that they consist of disordered carbonaceous materials. IR micro-mapping results of the filament reveal that the distributions of peak heights at 2920 cm(-1) (aliphatic CH(2)), 1585 cm(-1) (aromatic C-C), and 1370 cm(-1) (aliphatic CH(3)) match the shape of the filamentous microfossil. These results suggest that IR microspectroscopy can be used for in situ characterization of organic polar signatures that morphologically indicate microfossils embedded in chert by using doubly-polished rock (petrographic) thin section samples. Further, these methods can be applied to controversial microfossil-like structures to test their biogenic nature.


Assuntos
Fósseis , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos
5.
Proc Natl Acad Sci U S A ; 100(8): 4399-404, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12682298

RESUMO

A thin carbonate unit associated with a Sturtian-age ( approximately 750-700 million years ago) glaciogenic diamictite of the Neoproterozoic Kingston Peak Formation, eastern California, contains microfossil evidence of a once-thriving prokaryotic and eukaryotic microbial community (preserved in chert and carbonate). Stratiform stromatolites, oncoids, and rare columnar stromatolites also occur. The microbial fossils, which include putative autotrophic and heterotrophic eukaryotes, are similar to those found in chert in the underlying preglacial units. They indicate that microbial life adapted to shallow-water carbonate environments did not suffer the significant extinction postulated for this phase of low-latitude glaciation and that trophic complexity survived through snowball Earth times.


Assuntos
Ecossistema , Fósseis , Evolução Biológica , California , Fenômenos Geológicos , Geologia , Paleontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA