Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Dairy Sci ; 107(4): 1916-1927, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923201

RESUMO

This study aimed to use ultra-high-performance liquid chromatography coupled to a triple-quadrupole mass spectrometer to detect 11 carbamate pesticide residues in raw and pasteurized camel milk samples collected from the United Arab Emirates. A method was developed and validated by evaluating limits of detection, limits of quantitation, linearity, extraction recovery, repeatability, intermediate precision, and matrix effect. Due to the high protein and fat content in camel milk, a sample preparation step was necessary to avoid potential interference during analysis. For this purpose, 5 different liquid-liquid extraction techniques were evaluated to determine their efficiency in extracting carbamate pesticides from camel milk. The established method demonstrated high accuracy and precision. The matrix effect for all carbamate pesticides was observed to fall within the soft range, indicating its negligible effect. Remarkably, detection limits for all carbamates were as low as 0.01 µg/kg. Additionally, the coefficients of determination were >0.998, demonstrating excellent linearity. A total of 17 camel milk samples were analyzed, and only one sample was found to be free from any carbamate residues. The remaining 16 samples contained at least one carbamate residue, yet all detected concentrations were below the recommended maximum residue limits set by Codex Alimentarius and the European Union pesticide databases. Nonetheless, it is worth noting that the detected levels of ethiofencarb in 3 samples were close to the borderline of the maximum residue limit. To assess the health risk for consumers of camel milk, the hazard index values of carbofuran, carbaryl, and propoxur were calculated. The hazard index values for these 3 carbamate pesticides were all below 1, indicating that camel milk consumers are not at risk from these residues.


Assuntos
Resíduos de Praguicidas , Animais , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/veterinária , Camelus , Leite/química , Cromatografia Líquida/métodos , Cromatografia Líquida/veterinária , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/veterinária , Carbamatos/análise , Medição de Risco
2.
J Dairy Sci ; 107(5): 2706-2720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38056563

RESUMO

Making cheese from camel milk (CM) presents various challenges due to its different physicochemical properties compared with bovine milk (BM). In this study, we investigated the chemical composition, proteolysis, meltability, oiling off, texture profile, color, microstructure, and rheological properties of low-fat Cheddar cheese (LFCC) prepared from BM-CM blends. LFCC was produced from BM or BM supplemented with 15% CM (CM15) and 30% CM (CM30), and analyzed after 14, 60, 120, and 180 d of ripening at 8°C. Except for salt content, no significant differences were observed among LFCC from BM, CM15, and CM30. The addition of CM increased the meltability and oiling off in the resulting cheese throughout storage. With respect to color properties, after melting, LFCC CM30 showed lower L* values than LFCC made from BM and CM15, and a* and b* values were higher than those of BM and CM15 samples. LFCC from CM30 also exhibited lower hardness compared with the other cheeses. Moreover, LFCC made from BM showed a rough granular surface, but cheese samples made from BM-CM blends exhibited a smooth surface. The rheological parameters, including storage modulus, loss modulus, and loss tangent, varied among cheese treatments. The determined acetoin and short-chain volatile acids (C2-C6) in LFCC were affected by the use of CM, because CM15 showed significantly higher amounts than BM and CM30, respectively. The detailed interactions between BM and CM in the cheese matrix should be further investigated.

3.
J Dairy Sci ; 107(5): 2573-2585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37977446

RESUMO

Camel milk (CM), known for its immune-regulatory, anti-inflammatory, antiapoptotic, and antidiabetic properties, is a natural healthy food. It is easily digestible due to the high levels of ß-casein and diverse secreted antibodies, exhibiting superior antibacterial and antiviral activities compared with bovine milk. ß-casein is less allergic and more digestible because it is more susceptible to digestive hydrolysis in the gut; therefore, higher levels of ß-casein make CM advantageous for human health. Furthermore, antibodies help the digestive system by destroying the antigens, which are then overwhelmed and digested by macrophages. The connection between the gut microbiota and human health has gained substantial research attention, as it offers potential benefits and supports disease treatment. The gut microbiota has a vital role in regulating the host's health because it helps in several biological functions, such as protection against pathogens, immune function regulation, energy harvesting from digested foods, and reinforcement of digestive tract biochemical barriers. These functions could be affected by the changes in the gut microbiota profile, and gut microbiota differences are associated with several diseases, such as inflammatory bowel disease, colon cancer, irritable bowel disorder, mental illness, allergy, and obesity. This review focuses on the digestibility of CM components, particularly protein and fat, and their influence on gut microbiota modulation. Notably, the hypoallergenic properties and small fat globules of CM contribute to its enhanced digestibility. Considering the rapid digestion of its proteins under conditions simulating infant gastrointestinal digestion, CM exhibits promise as a potential alternative for infant formula preparation due to the high ß-/αs-casein ratio and protective proteins, in addition to the absence of ß-lactoglobulin.

4.
Food Microbiol ; 112: 104238, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906321

RESUMO

The trends toward healthy living, vegetarianism, and busy schedules have increased salad popularity. Salads are usually consumed raw without any thermal treatment, and therefore, without proper care they can become major vehicles for foodborne illness outbreaks. This review examines the microbial quality of 'dressed' salads which contain two or more vegetables/fruits and salad dressings. The possible sources of ingredient contamination, recorded illnesses/outbreaks, and overall microbial quality observed worldwide, besides the antimicrobial treatments available are discussed in detail. Noroviruses were most frequently implicated in outbreaks. Salad dressings usually play a positive role in influencing microbial quality. However, this depends on several factors like the type of contaminating microorganism, storage temperature, dressing pH and ingredients, plus the type of salad vegetable. Very limited literature exists on antimicrobial treatments that can be used successfully with salad dressings and 'dressed' salads. The challenge with antimicrobial treatments is to find ones sufficiently broad in spectrum, compatible with produce flavour which can be applied at competitive cost. It is evident that renewed emphasis on prevention of produce contamination at the producer, processor, wholesale and retail levels plus enhanced hygiene vigilance at foodservice will have a major impact on reducing the risk of foodborne illnesses from salads.


Assuntos
Doenças Transmitidas por Alimentos , Saladas , Humanos , Microbiologia de Alimentos , Surtos de Doenças , Doenças Transmitidas por Alimentos/prevenção & controle , Higiene , Verduras
5.
J Dairy Sci ; 106(10): 6671-6687, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562642

RESUMO

During fermentation, camel milk forms a fragile, acid-induced gel, which is less stable compared with the gel formed by bovine milk. In this study, camel milk was supplemented with different levels of soy extract, and the obtained blends were fermented with 2 different starter culture strains (a high acidic culture and a low acidic culture). The camel milk-soy extract yogurt treatments were evaluated for pH value, acidity, total phenolic compounds, antioxidant capacities, degree of hydrolysis, α-amylase and α-glucosidase inhibition, angiotensin-converting enzyme inhibition, antiproliferative activities, and rheological properties after 1 and 21 d of storage at 4°C. The results revealed that some of the investigated parameters were significantly affected by the starter culture strain and storage period. For instance, the effect of starter cultures was evident for the degree of hydrolysis, antioxidant capacities, proliferation inhibition, and rheological properties because these treatments led to different responses. Furthermore, the characteristics of camel milk-soy extract yogurt were also influenced by the supplementation level of soy extract, particularly after 21 d of storage. This study could provide valuable knowledge to the dairy industry because it highlighted the characteristics of camel milk-soy yogurt prepared with 2 different starter culture strains.


Assuntos
Camelus , Leite , Animais , Leite/química , Camelus/metabolismo , Viscosidade , Antioxidantes/metabolismo , Iogurte , Fermentação
6.
J Dairy Sci ; 106(12): 8221-8238, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641311

RESUMO

The manufacture of camel milk (CM) yogurt has been associated with several challenges, such as the weak structure and watery texture, thereby decreasing its acceptability. Therefore, this study aimed to investigate the effect of whey protein isolate (WPI) addition on the health-promoting benefits, texture profile, and rheological properties of CM yogurt after 1 and 15 d of storage. Yogurt was prepared from CM supplemented with 0, 3, and 5% of WPI and compared with bovine milk yogurt. The results show that the water holding capacity was affected by WPI addition representing 31.3%, 56.8%, 64.7%, and 45.1% for yogurt from CM containing 0, 3 or 5% WPI, and bovine milk yogurt, respectively, after 15 d. The addition of WPI increased yogurt hardness, adhesiveness, and decreased the resilience. CM yogurt without WPI showed lower apparent viscosity, storage modulus, and loss modulus values compared with other samples. The supplementation of CM with WPI improved the rheological properties of the obtained yogurt. Furthermore, the antioxidant activities of yogurt before and after in vitro digestion varied among yogurt treatments, which significantly increased after digestion except the superoxide anion scavenging and lipid oxidation inhibition. After in vitro digestion at d 1, the superoxide anion scavenging of the 4 yogurt treatments respectively decreased from 83.7%, 83.0%, 79.1%, and 87.4% to 36.7%, 38.3%, 44.6%, and 41.3%. The inhibition of α-amylase and α-glucosidase, angiotensin-converting enzyme inhibition, cholesterol removal, and degree of hydrolysis exhibited different values before and after in vitro digestion.


Assuntos
Proteínas do Leite , Leite , Animais , Leite/química , Proteínas do Soro do Leite/química , Proteínas do Leite/análise , Iogurte , Camelus/metabolismo , Superóxidos
7.
Foodborne Pathog Dis ; 20(5): 177-185, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37097316

RESUMO

The demand for rapid and accurate detection methods for Salmonella Enteritidis necessitates the development of highly sensitive and specific biosensors to ensure proper monitoring of food safety and quality requirements in the food sector and to secure human health. This study focused on development of a polyaniline/zinc oxide (PANI/ZnO) nanocomposite film on a gold electrode conductometric immunosensor for detection of Salmonella Enteritidis. The sensor was modified with monoclonal anti-Salmonella Enteritidis antibodies as biorecognition elements. The fabricated sensor was able to detect and quantify the target pathogen within 30 min and showed a good detection range from 101 to 105 colony-forming units (CFU)/mL for Salmonella Enteritidis and a minimum detection limit of 6.44 CFU/mL in 0.1% peptone water. Additionally, the fabricated sensor showed good selectivity and detection limit toward the target bacterium and successfully determined Salmonella Enteritidis content in ultrahigh heat-treated skim milk samples without pretreatment of the food sample.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Óxido de Zinco , Humanos , Animais , Salmonella enteritidis , Limite de Detecção , Leite/microbiologia , Imunoensaio
8.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903269

RESUMO

The milk of mammals is a complex fluid mixture of various proteins, minerals, lipids, and other micronutrients that play a critical role in providing nutrition and immunity to newborns. Casein proteins together with calcium phosphate form large colloidal particles, called casein micelles. Caseins and their micelles have received great scientific interest, but their versatility and role in the functional and nutritional properties of milk from different animal species are not fully understood. Caseins belong to a class of proteins that exhibit open and flexible conformations. Here, we discuss the key features that maintain the structures of the protein sequences in four selected animal species: cow, camel, human, and African elephant. The primary sequences of these proteins and their posttranslational modifications (phosphorylation and glycosylation) that determine their secondary structures have distinctively evolved in these different animal species, leading to differences in their structural, functional, and nutritional properties. The variability in the structures of milk caseins influence the properties of their dairy products, such as cheese and yogurt, as well as their digestibility and allergic properties. Such differences are beneficial to the development of different functionally improved casein molecules with variable biological and industrial utilities.


Assuntos
Queijo , Micelas , Recém-Nascido , Animais , Feminino , Bovinos , Humanos , Leite/química , Caseínas/química , Sequência de Aminoácidos , Proteínas do Leite/análise , Mamíferos
9.
J Dairy Sci ; 105(6): 4843-4856, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35379457

RESUMO

Camel milk (CM) can be used as an ingredient to produce various dairy products but it forms weak rennet-induced and acid-induced gels compared with bovine milk (BM). Therefore, in this study, we aimed to investigate the effect of blending bovine milk with camel milk on the physicochemical, rheological (amplitude sweep and frequency sweep), and microstructural properties of low-fat akawi (LFA) cheese. The cheeses were made of BM only or BM blended with 15% (CM15%) or 30% (CM30%) camel milk and stored at 4°C for 28 d. The viscoelastic properties as a function of temperature were assessed. The LFA cheeses made from blended milks had higher moisture, total Ca, and soluble Ca contents, and had higher pH 4.6-water-soluble nitrogen compared with those made from BM. Analysis by scanning electron microscopy demonstrated that the microstructures formed in BM cheese were rough with granular surfaces, whereas those in blended milk cheeses had smooth surfaces. Hardness was lower for LFA cheeses made from blended milk than for those made from BM only. The LFA cheeses demonstrated viscoelastic behavior in a linear viscoelastic range from 0.1 to 1.0% strain. The storage modulus (G') was lower in LFA cheese made from BM over a range of frequencies. Adding CM reduced the resistance of LFA cheeses to flow as temperature increased. Blended cheeses exhibited lower complex viscosity values than BM cheeses during temperature increases. Thus, the addition of camel milk improved the rheological properties of LFA cheese.


Assuntos
Queijo , Animais , Camelus , Queijo/análise , Manipulação de Alimentos , Leite/química , Reologia , Viscosidade
10.
J Dairy Sci ; 105(6): 4722-4733, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35379458

RESUMO

The consumption of fermented dairy products has been linked with lowering the risk of type 2 diabetes mellitus (T2DM), but studies have yet to demonstrate a definite association. We evaluated evidence from a cross-sectional analysis of longitudinal studies and human and animal experimental trials to further understand the current knowledge linking short- and long-term consumption of fermented dairy products to T2DM. Most cohort studies revealed a protective effect of fermented dairy products on T2DM development, with yogurt noted as the most consistent food item protecting against the disease. Human experimental trials and animal studies revealed improvements in biomarkers of glycemic control with short-term monitored intake of fermented dairy products from various sources. Therefore, fermented dairy products may offer protection against the development and may have therapeutic benefits for individuals with T2DM. This could influence on dietary recommendations and the development of functional foods aiming to minimize the risk of T2DM.


Assuntos
Produtos Fermentados do Leite , Diabetes Mellitus Tipo 2 , Animais , Estudos Transversais , Laticínios , Diabetes Mellitus Tipo 2/prevenção & controle , Diabetes Mellitus Tipo 2/veterinária , Dieta/veterinária , Humanos , Fatores de Risco
11.
J Dairy Sci ; 105(11): 8734-8749, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175220

RESUMO

Camel (CM) milk is used in variety of ways; however, it has inferior gelling properties compared with bovine milk (BM). In this study, we aimed to investigate the physicochemical, functional, microstructural, and rheological properties of low-moisture part-skim (LMPS) mozzarella cheese, made from BM, or BM mixed with 15% CM (CM15%) or 30% CM (CM30%), at various time points (up to 60 d) of storage at 4°C after manufacture. Low-moisture part-skim mozzarella cheeses using CM15% and CM30% had high moisture and total Ca contents, but lower soluble Ca content. Compared with BM cheese, CM15% and CM30% LMPS mozzarella cheese exhibited higher proteolysis rates during storage. Adding CM affected the color properties of LMPS mozzarella cheese manufactured from mixed milk. Scanning electron microscopy images showed that the microstructure of CM15% and CM30% cheeses had smooth surfaces, whereas the BM cheese microstructures were rough with granulated surfaces. Low-moisture part-skim mozzarella cheeses using CM15% and CM30% showed significantly lower hardness and chewiness, but higher stringiness than BM cheese. Compared with BM cheese, CM15% and CM30% cheeses showed lower tan δ levels during temperature surges, suggesting that the addition of CM increased the meltability of LMPS mozzarella cheese during temperature increases. Camel milk addition affected the physicochemical, microstructural, and rheological properties of LMPS mozzarella cheese.


Assuntos
Queijo , Animais , Camelus , Queijo/análise , Manipulação de Alimentos/métodos , Leite/química , Proteólise , Bovinos
12.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144679

RESUMO

Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.


Assuntos
Oligossacarídeos , Prebióticos , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Aditivos Alimentares , Gases , Humanos , Oligossacarídeos/metabolismo , Sementes/metabolismo
13.
J Dairy Sci ; 104(3): 2719-2734, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33455758

RESUMO

This study aimed to investigate the survival of the foodborne pathogen Escherichia coli O157:H7 in white-brined cheeses as influenced by the presence of Lactobacillus reuteri. The white cheeses were made from pasteurized bovine milk inoculated with E. coli O157:H7 (cocktail of 3 strains) to achieve ∼5 log10 cfu/g with absence or presence of Lb. reuteri (∼6 log10 cfu/g). Cheese samples were brined in 10% or 15% NaCl solution and stored at 10°C and 25°C for 28 d. The white-brined cheeses were assessed for salt content, pH, water activity (Aw), and numbers of E. coli O157:H7, Lb. reuteri, nonstarter lactic acid bacteria (NSLAB), yeasts, and molds. Results showed that E. coli O157:H7 survived in cheese stored in both brine solutions at 10°C and 25°C regardless of the presence of Lb. reuteri. A substantial reduction was observed in cheese stored in 10% NaCl brine at 25°C, followed by cheese stored in 15% NaCl brine at 10°C by 2.64 and 2.16 log10 cfu/g, respectively, in the presence of Lb. reuteri and by 1.02 and 1.87 log10 cfu/g, respectively, in the absence of Lb. reuteri under the same conditions. The pathogen in brine solutions survived but at a lower rate. Furthermore, the growth of Lb. reuteri and NSLAB were enhanced or slightly decreased in cheese and brine by 28 d, respectively. The salt concentrations of cheese ranged from 4 to 6% and 5 to 7% (wt/wt), during 28-d ripening in 10 and 15% brine, respectively. Values of pH and Aw slightly increased at d 1 after exposure to brine and reached 4.69 to 6.08 and 0.91 to 0.95, respectively, in all treatments. Therefore, the addition of Lb. reuteri can be used as a biopreservation method to inhibit the survival of E. coli O157:H7 in white-brined cheese when combined with the appropriate temperature, NaCl level, and storage time.


Assuntos
Queijo , Escherichia coli O157 , Limosilactobacillus reuteri , Animais , Bovinos , Queijo/análise , Contagem de Colônia Microbiana/veterinária , Manipulação de Alimentos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Sais , Temperatura
14.
J Dairy Sci ; 104(9): 9450-9464, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147215

RESUMO

The objective of this study was to assess protein degradation and biological activities of the water-soluble extract (WSE) and the 10 kDa permeable and nonpermeable fractions of in vitro digesta of low-fat Akawi cheese made from blends (100:0, 85:15, or 70:30) of bovine milk and camel milk and ripened for 28 d. Biological activities, such as antioxidant activities, amylase and glucosidase inhibition, angiotensin-converting enzyme inhibition, and antiproliferative of the WSE, and the 10 kDa permeable and nonpermeable fraction of the digesta were assessed. To identify the nature of the bioaccessible compounds, untargeted metabolomic analysis was carried out by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Higher o-phthaldialdehyde absorbances were observed in cheeses made of bovine-camel milk blends compared with cheese from bovine milk only. The WSE from these blends also exhibited higher angiotensin-converting enzyme inhibitory effects and higher antiproliferative effects than from bovine milk. The results from this study suggest that the use of blends of camel milk and bovine milk can modulate biological activities of low-fat Akawi cheese.


Assuntos
Queijo , Animais , Antioxidantes , Camelus , Bovinos , Queijo/análise , Digestão , Manipulação de Alimentos , Leite
15.
J Dairy Sci ; 104(8): 8363-8379, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33934857

RESUMO

The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.


Assuntos
Probióticos , Animais , Bile , Ácidos e Sais Biliares , Meios de Cultura , Trato Gastrointestinal , Concentração de Íons de Hidrogênio
16.
BMC Public Health ; 20(1): 1322, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867725

RESUMO

BACKGROUND: Kitchen sponges are a major source of cross-contamination as they can transfer foodborne pathogens, infectious agents and spoilage causing microorganisms to food contact surfaces. Several studies have revealed that university students adopt poor practices regarding food safety, hygiene, and the handling of kitchen cleaning equipment. METHODS: A total of fifty kitchen sponges were collected along with a questionnaire addressing social demographics and kitchen sponge usage by students living at the University of Sharjah dormitories. The effect of storage (3 and 10 days) on the microbial population of kitchen sponges at room temperature (21 °C) was assessed. Enterobacteriaceae isolated from sponges were identified and their antibiotic resistance determined. RESULTS: Student responses revealed that kitchen sponges used to clean food contact surfaces were also used to clean the oven (32%), sink (26%), refrigerator (10%), and to clean spills on the floor (4%). Kitchen sponges contained high counts of mesophilic aerobic bacteria (7.9 log10/cm3), coliform (7.2 log10/cm3), Enterobacteriaceae (7.3 log10/cm3) and yeasts and molds (7.0 log10/cm3). After storage of the sponges at room temperature (21 °C) for 3 and 10 days, the number of mesophilic aerobic bacteria, coliform, Enterobacteriaceae and yeasts and molds decreased by 0.4 and 1.3 log10/cm3, 0.7 and 1.4 log10/cm3, 0.4 and 1.1 log10/cm3, and 0.6 and 1.3 log10/cm3, respectively. The most frequently isolated Enterobacteriaceae were Enterobacter cloacae (56%) and Klebsiella oxytoca (16%). All E. cloacae isolates were resistant to amoxicillin, cefalotin, cefoxitin and cefuroxime axetil. CONCLUSIONS: This study showed that students living in dormitories lacked good hygienic practices and were at increased risk of food poisoning. Kitchen sponges were highly contaminated with potentially pathogenic bacteria which could be transferred from the general kitchen environment to food contact surfaces and consequently lead to food contamination.


Assuntos
Enterobacteriaceae/isolamento & purificação , Contaminação de Alimentos/estatística & dados numéricos , Manipulação de Alimentos/estatística & dados numéricos , Microbiologia de Alimentos , Inocuidade dos Alimentos , Estudantes/psicologia , Universidades/estatística & dados numéricos , Adulto , Contagem de Colônia Microbiana , Feminino , Humanos , Masculino , Estudantes/estatística & dados numéricos , Emirados Árabes Unidos , Adulto Jovem
17.
Food Microbiol ; 92: 103571, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950156

RESUMO

Oily, low water activity (OL aw) products including tahini (sesame seed paste), halva (tahini halva), peanut butter, and chocolate, have been recently linked to numerous foodborne illness outbreaks and recalls. This review discusses the ingredients used and processing of OL aw products with a view to provide greater understanding of the routes of their contamination with foodborne pathogens and factors influencing pathogen persistence in these foods. Adequate heat treatment during processing may eliminate bacterial pathogens from OL aw foods; however, post-processing contamination commonly occurs. Once these products are contaminated, their high fat and sugar content can enhance pathogen survival for long periods. The physiological basis and survival mechanisms used by pathogens in these products are comprehensively discussed here. Foodborne outbreaks and recalls linked to OL aw foods are summarized and it was observed that serotypes of Salmonella enterica were the predominant pathogens causing illnesses. Further, intervention strategies available to control foodborne pathogens such as thermal inactivation, use of natural antimicrobials, irradiation and hydrostatic pressure are assessed for their usefulness to achieve pathogen control and enhance the safety of OL aw foods. Sanitation, hygienic design of manufacturing facilities, good hygienic practices, and environmental monitoring of OL aw food industries were also discussed.


Assuntos
Contaminação de Alimentos/análise , Água/análise , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Óleos/análise
18.
Food Microbiol ; 86: 103338, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703867

RESUMO

Tahini is a popular food product in the Middle East region and is used as a major ingredient in several ready-to-eat food products. Tahini and its products have been linked to foodborne illness outbreaks and product recalls worldwide as a result of Salmonella spp. contamination. The objectives of the current study were to investigate: i) the effectiveness of 10 plant essential oil extracts on the viability of Salmonella spp. using disc diffusion ii) the antimicrobial activity of the most effective oils against Salmonella spp. in commercial or 10% w/v hydrated tahini (tahini-based product model) stored at 37, 25 and 10 °C for 28 d and iii) the effect of the addition of essential oil extracts on the sensory acceptability of tahini and hydrated tahini. Among the tested essential oils, thyme (TO) and cinnamon oil (CO) showed the highest antimicrobial activity against tested Salmonella spp. at 37 and 10 °C using a disc diffusion assay method. In tahini, the addition of 2.0% CO reduced the numbers of Salmonella spp. by 2.87, 2.64 or 2.35 log10 CFU/ml at 37, 25 or 10 °C, respectively, by 28 d. However, the antimicrobial activity of CO was more pronounced at all storage temperatures in hydrated tahini where no viable cells were detected after 3 d storage at 25 and 37 °C, or after 7 d at 10 °C. However, at 25 and 37 °C, the antimicrobial activity of CO was more evident since no viable cells were detected after 14 d when 0.5% was used. The numbers of Salmonella spp. were reduced by 3.29, 3.03 or 2.17 log10 CFU/ml at 37, 25 or 10 °C, respectively, after 28 d when 2.0% TO was added to tahini. Salmonella spp. were not detected in the hydrated tahini treated with 2.0% TO after 28 d at 37 °C or 25 °C, while at 10 °C, the numbers of Salmonella spp. were not significantly reduced after 28 d in hydrated tahini compared to the initial numbers at zero time. Therefore, the addition of TO and CO could be used to preclude the post process contamination of tahini with foodborne pathogens, yet, the addition of TO and CO to tahini reduced its consumer acceptability compared untreated tahini.


Assuntos
Cinnamomum zeylanicum/química , Aditivos Alimentares/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Salmonella/efeitos dos fármacos , Sesamum/microbiologia , Thymus (Planta)/química , Humanos , Salmonella/crescimento & desenvolvimento , Paladar , Temperatura
19.
J Dairy Sci ; 103(8): 6869-6881, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32505390

RESUMO

Staphylococcus aureus is a major foodborne pathogen that causes severe disease in humans. It is commonly found in milk and dairy products, particularly in fresh brined cheese. Our aim was to investigate the behavior of Staph. aureus and enterotoxin production during the storage of white-brined cheese prepared with or without a starter culture and stored in a 10 or 15% NaCl brine at 10°C and 25°C for 28 d. NaCl concentration, water activity, pH, and number of Staph. aureus and lactic acid bacteria were determined in cheese and brine. Only 1 of 4 Staph. aureus strains (ATCC 439) was positive for enterotoxin production, and its production was detected in unsalted UHT milk, but not in salted milk or in any of the cheese treatments held at 37°C for 1, 3, or 7 d. Staphylococcus aureus grew in the cheese stored in both brines at 10°C and 25°C, regardless of the presence of a starter culture, although the latter significantly reduced Staph. aureus growth in cheese or its brine at 10°C. Staphylococcus aureus numbers were increased by 2.26 and 0.47 log10 cfu/g in cheese stored in 10 and 15% NaCl brine, respectively, in the presence of starter culture, and by 2.78 and 2.96 log10 cfu/g, respectively, in the absence of starter culture at 10°C. Nonetheless, the pathogen grew, but at a lower number in the brines. The salt concentration of cheese stored in 10% brine remained at approximately 5% during storage; however, in 15% brine, the salt concentration increased to almost 8% (wt/wt) by 28 d. The addition of a starter culture, high salt concentration, low temperature, and pH (∼5.2) had inhibitory effects on the growth of Staph. aureus. Moreover, lactic acid bacterial numbers increased considerably in cheese and brine by d 28. The use of starter cultures, salt (15%), and low storage temperature (10°C) reduced the growth of Staph. aureus, and salt may have prevented enterotoxin production in white-brined cheese.


Assuntos
Queijo/análise , Manipulação de Alimentos , Microbiologia de Alimentos , Armazenamento de Alimentos , Sais , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Queijo/microbiologia , Enterotoxinas/análise , Humanos , Leite/química , Temperatura
20.
Compr Rev Food Sci Food Saf ; 19(3): 1110-1124, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-33331686

RESUMO

Probiotics are defined as live microorganisms that improve the health of the host when administered in adequate quantities. Nonetheless, probiotics encounter extreme environmental conditions during food processing or along the gastrointestinal tract. This review discusses different environmental stresses that affect probiotics during food preparation, storage, and along the alimentary canal, including high temperature, low temperature, low and alkaline pH, oxidative stress, high hydrostatic pressure, osmotic pressure, and starvation. The understanding of how probiotics deal with environmental stress and thrive provides useful information to guide the selection of the strains with enhanced performance in specific situations, in food processing or during gastrointestinal transit. In most cases, multiple biological functions are affected upon exposure of the cell to environmental stress. Sensing of sublethal environmental stress can allow for adaptation processes to occur, which can include alterations in the expression of specific proteins.


Assuntos
Lactobacillales/fisiologia , Probióticos , Proteoma/análise , Manipulação de Alimentos , Microbiologia de Alimentos , Trato Gastrointestinal , Lactobacillales/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA