Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 585(7825): 414-419, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641828

RESUMO

Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues1-3. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination. Accordingly, ZIKV replicates less efficiently in the brain and reproductive tissues of Trim7-/- mice. Ubiquitinated E is present on infectious virions of ZIKV when they are released from specific cell types, and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the TIM1 (also known as HAVCR1) receptor of host cells, which enhances virus entry in cells as well as in brain tissue in vivo. Recombinant ZIKV mutants that lack ubiquitination are attenuated in human cells and in wild-type mice, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viraemia in mice. Our results demonstrate that the ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.


Assuntos
Ubiquitinação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Zika virus/metabolismo , Zika virus/patogenicidade , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Encéfalo/metabolismo , Linhagem Celular , Culicidae/citologia , Culicidae/virologia , Endossomos/metabolismo , Feminino , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Masculino , Fusão de Membrana , Camundongos , Especificidade de Órgãos , Poliubiquitina/imunologia , Poliubiquitina/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Tropismo Viral , Viremia/imunologia , Viremia/prevenção & controle , Viremia/virologia , Replicação Viral , Zika virus/química , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
2.
PLoS Pathog ; 19(3): e1011224, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996041

RESUMO

Mosquito transmission of dengue viruses to humans starts with infection of skin resident cells at the biting site. There is great interest in identifying transmission-enhancing factors in mosquito saliva in order to counteract them. Here we report the discovery of high levels of the anti-immune subgenomic flaviviral RNA (sfRNA) in dengue virus 2-infected mosquito saliva. We established that sfRNA is present in saliva using three different methods: northern blot, RT-qPCR and RNA sequencing. We next show that salivary sfRNA is protected in detergent-sensitive compartments, likely extracellular vesicles. In support of this hypothesis, we visualized viral RNAs in vesicles in mosquito saliva and noted a marked enrichment of signal from 3'UTR sequences, which is consistent with the presence of sfRNA. Furthermore, we show that incubation with mosquito saliva containing higher sfRNA levels results in higher virus infectivity in a human hepatoma cell line and human primary dermal fibroblasts. Transfection of 3'UTR RNA prior to DENV2 infection inhibited type I and III interferon induction and signaling, and enhanced viral replication. Therefore, we posit that sfRNA present in salivary extracellular vesicles is delivered to cells at the biting site to inhibit innate immunity and enhance dengue virus transmission.


Assuntos
Aedes , Culicidae , Dengue , Flavivirus , Animais , Humanos , Flavivirus/genética , RNA Subgenômico , Saliva/metabolismo , Regiões 3' não Traduzidas , Replicação Viral , RNA Viral/genética , RNA Viral/metabolismo
3.
PLoS Pathog ; 18(6): e1010658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759511

RESUMO

Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.


Assuntos
Infecções por Henipavirus , Estomatite Vesicular , Vacinas Virais , Animais , Modelos Animais de Doenças , Vacinas contra Ebola , Glicoproteínas/genética , Doença pelo Vírus Ebola/prevenção & controle , Infecções por Henipavirus/prevenção & controle , Humanos , Camundongos , Vírus Nipah/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Sintéticas/efeitos adversos , Estomatite Vesicular/prevenção & controle , Vacinas Virais/efeitos adversos
4.
Proc Natl Acad Sci U S A ; 117(33): 20190-20197, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747564

RESUMO

Arboviruses maintain high mutation rates due to lack of proofreading ability of their viral polymerases, in some cases facilitating adaptive evolution and emergence. Here we show that, just before its 2013 spread to the Americas, Zika virus (ZIKV) underwent an envelope protein V473M substitution (E-V473M) that increased neurovirulence, maternal-to-fetal transmission, and viremia to facilitate urban transmission. A preepidemic Asian ZIKV strain (FSS13025 isolated in Cambodia in 2010) engineered with the V473M substitution significantly increased neurovirulence in neonatal mice and produced higher viral loads in the placenta and fetal heads in pregnant mice. Conversely, an epidemic ZIKV strain (PRVABC59 isolated in Puerto Rico in 2015) engineered with the inverse M473V substitution reversed the pathogenic phenotypes. Although E-V473M did not affect oral infection of Aedes aegypti mosquitoes, competition experiments in cynomolgus macaques showed that this mutation increased its fitness for viremia generation, suggesting adaptive evolution for human viremia and hence transmission. Mechanistically, the V473M mutation, located at the second transmembrane helix of the E protein, enhances virion morphogenesis. Overall, our study revealed E-V473M as a critical determinant for enhanced ZIKV virulence, intrauterine transmission during pregnancy, and viremia to facilitate urban transmission.


Assuntos
Epidemias , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/patogenicidade , Animais , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Filogenia , Gravidez , Carga Viral , Virulência , Zika virus/fisiologia , Infecção por Zika virus/epidemiologia
6.
J Infect Dis ; 220(5): 735-742, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31053842

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) infection can result in chikungunya fever (CHIKF), a self-limited acute febrile illness that can progress to chronic arthralgic sequelae in a large percentage of patients. A new measles virus-vectored vaccine was developed to prevent CHIKF, and we tested it for immunogenicity and efficacy in a nonhuman primate model. METHODS: Nine cynomolgus macaques were immunized and boosted with the measles virus-vectored chikungunya vaccine or sham-vaccinated. Sera were taken at multiple times during the vaccination phase to assess antibody responses against CHIKV. Macaques were challenged with a dose of CHIKV previously shown to cause fever and viremia, and core body temperature, viremia, and blood cell and chemistry panels were monitored. RESULTS: The vaccine was well tolerated in all macaques, and all seroconverted (high neutralizing antibody [PRNT80 titers, 40-640] and enzyme-linked immunosorbent assay titers) after the boost. Furthermore, the vaccinated primates were protected against viremia, fever, elevated white blood cell counts, and CHIKF-associated cytokine changes after challenge with the virulent La Reunión CHIKV strain. CONCLUSIONS: These results further document the immunogenicity and efficacy of a measles-vectored chikungunya vaccine that shows promise in Phase I-II clinical trials. These findings are critical to human health because no vaccine to combat CHIKF is yet licensed.


Assuntos
Febre de Chikungunya/prevenção & controle , Imunogenicidade da Vacina/imunologia , Vacina contra Sarampo/imunologia , Sarampo/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Temperatura Corporal , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Imunização Secundária , Macaca fascicularis/imunologia , Masculino , Vírus do Sarampo/imunologia , Vacinação , Viremia
7.
Proc Natl Acad Sci U S A ; 113(3): 722-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26733683

RESUMO

Necrotizing fasciitis (NF) caused by flesh-eating bacteria is associated with high case fatality. In an earlier study, we reported infection of an immunocompetent individual with multiple strains of Aeromonas hydrophila (NF1-NF4), the latter three constituted a clonal group whereas NF1 was phylogenetically distinct. To understand the complex interactions of these strains in NF pathophysiology, a mouse model was used, whereby either single or mixed A. hydrophila strains were injected intramuscularly. NF2, which harbors exotoxin A (exoA) gene, was highly virulent when injected alone, but its virulence was attenuated in the presence of NF1 (exoA-minus). NF1 alone, although not lethal to animals, became highly virulent when combined with NF2, its virulence augmented by cis-exoA expression when injected alone in mice. Based on metagenomics and microbiological analyses, it was found that, in mixed infection, NF1 selectively disseminated to mouse peripheral organs, whereas the other strains (NF2, NF3, and NF4) were confined to the injection site and eventually cleared. In vitro studies showed NF2 to be more effectively phagocytized and killed by macrophages than NF1. NF1 inhibited growth of NF2 on solid media, but ExoA of NF2 augmented virulence of NF1 and the presence of NF1 facilitated clearance of NF2 from animals either by enhanced priming of host immune system or direct killing via a contact-dependent mechanism.


Assuntos
Aeromonas hydrophila/patogenicidade , Coinfecção/microbiologia , Fasciite Necrosante/microbiologia , Aeromonas hydrophila/genética , Aeromonas hydrophila/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Progressão da Doença , Fasciite Necrosante/patologia , Genes Bacterianos , Injeções , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Movimento , Especificidade de Órgãos , Fagocitose , Células RAW 264.7 , Análise de Sobrevida , Virulência
8.
Clin Infect Dis ; 64(5): 675-677, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927858

RESUMO

In 2015, during the outbreak of Zika virus (ZIKV) in Brazil, we identified 3 cases of acute hearing loss after exanthematous illness. Serology yielded finding compatible with ZIKV as the cause of a confirmed (n = 1) and a probable (n = 2) flavivirus infection, indicating an association between ZIKV infection and transient hearing loss.


Assuntos
Perda Auditiva/diagnóstico , Perda Auditiva/etiologia , Infecção por Zika virus/complicações , Zika virus , Audiometria , Brasil/epidemiologia , Surtos de Doenças , Feminino , Perda Auditiva/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia
9.
Emerg Infect Dis ; 23(3): 559-560, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28005002

RESUMO

Zika virus has recently spread throughout the Americas. Although Aedes aegypti mosquitoes are considered the primary vector, Culex quinquefasciatus and mosquitoes of other species may also be vectors. We tested Cx. quinquefasciatus and Ae. taeniorhynchus mosquitoes from the US Gulf Coast; both were refractory to infection and incapable of transmission.


Assuntos
Aedes/virologia , Culex/virologia , Insetos Vetores/virologia , Zika virus/fisiologia , Animais , Transmissão de Doença Infecciosa , Estados Unidos
10.
Emerg Infect Dis ; 23(4): 625-632, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28287375

RESUMO

To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.


Assuntos
Aedes/virologia , Insetos Vetores/virologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/fisiologia , Distribuição Animal , Animais , Interações Hospedeiro-Patógeno , Camundongos
11.
J Infect Dis ; 214(9): 1349-1356, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436433

RESUMO

BACKGROUND: After decades of obscurity, Zika virus (ZIKV) has spread through the Americas since 2015 accompanied by congenital microcephaly and Guillain-Barré syndrome. Although these epidemics presumably involve transmission by Aedes aegypti, no direct evidence of vector involvement has been reported, prompting speculation that other mosquitoes such as Culex quinquefasciatus could be involved. METHODS: We detected an outbreak of ZIKV infection in southern Mexico in late 2015. Sera from suspected ZIKV-infected patients were analyzed for viral RNA and antibodies. Mosquitoes were collected in and around patient homes and tested for ZIKV. RESULTS: Of 119 suspected ZIKV-infected patients, 25 (21%) were confirmed by RT-PCR of serum collected 1-8 days after the onset of signs and symptoms including rash, arthralgia, headache, pruritus, myalgia, and fever. Of 796 mosquitoes collected, A. aegypti yielded ZIKV detection by RT-PCR in 15 of 55 pools (27.3%). No ZIKV was detected in C. quinquefasciatus ZIKV sequences derived from sera and mosquitoes showed a monophyletic relationship suggestive of a point source introduction from Guatemala. CONCLUSIONS: These results demonstrate the continued, rapid northward progression of ZIKV into North America with typically mild disease manifestations, and implicate A. aegypti for the first time as a principal vector in North America.


Assuntos
Aedes/virologia , Culicidae/virologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Zika virus/isolamento & purificação , América/epidemiologia , Animais , Culex/virologia , Surtos de Doenças , Guatemala/epidemiologia , Insetos Vetores/virologia , México/epidemiologia
12.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559148

RESUMO

The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.

13.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328060

RESUMO

Zika virus (ZIKV) causes human testicular inflammation and alterations in sperm parameters and causes testicular damage in mouse models. The involvement of individual immune cells in testicular damage is not fully understood. We detected virus in the testes of the interferon (IFN) α/ß receptor -/- A129 mice three weeks post-infection and found elevated chemokines in the testes, suggesting chronic inflammation and long-term infection play a role in testicular damage. In the testes, myeloid cells and CD4 + T cells were absent at 7 dpi but were present at 23 days post-infection (dpi), and CD8 + T cell infiltration started at 7 dpi. CD8 -/- mice with an antibody-depleted IFN response had a significant reduction in spermatogenesis, indicating that CD8 + T cells are essential to prevent testicular damage during long-term ZIKV infections. Our findings on the dynamics of testicular immune cells and importance of CD8 + T cells functions as a framework to understand mechanisms underlying observed inflammation and sperm alterations in humans.

14.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38463973

RESUMO

During major, recent yellow fever (YF) epidemics in Brazil, human cases were attributed only to spillover infections from sylvatic transmission with no evidence of human amplification. Furthermore, the historic absence of YF in Asia, despite abundant peridomestic Aedes aegypti and naive human populations, represents a longstanding enigma. We tested the hypothesis that immunity from dengue (DENV) and Zika (ZIKV) flaviviruses limits YF virus (YFV) viremia and transmission by Ae. aegypti . Prior DENV and ZIKV immunity consistently suppressed YFV viremia in experimentally infected macaques, leading to reductions in Ae. aegypti infection when mosquitoes were fed on infected animals. These results indicate that, in DENV- and ZIKV-endemic regions such as South America and Asia, flavivirus immunity suppresses YFV human amplification potential, reducing the risk of urban outbreaks. One-Sentence Summary: Immunity from dengue and Zika viruses suppresses yellow fever viremia, preventing infection of mosquitoes and reducing the risk of epidemics.

15.
Nat Commun ; 15(1): 2682, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538621

RESUMO

Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.


Assuntos
Aedes , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Viremia
16.
Heliyon ; 10(6): e27934, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545168

RESUMO

Ilhéus virus (ILHV)(Flaviviridae:Orthoflavivirus) is an arthropod-borne virus (arbovirus) endemic to Central and South America and the Caribbean. First isolated in 1944, most of our knowledge derives from surveillance and seroprevalence studies. These efforts have detected ILHV in a broad range of mosquito and vertebrate species, including humans, but laboratory investigations of pathogenesis and vector competence have been lacking. Here, we develop an immune intact murine model with several ages and routes of administration. Our model closely recapitulates human neuroinvasive disease with ILHV strain- and mouse age-specific virulence, as well as a uniformly lethal Ifnar-/- A129 immunocompromised model. Replication kinetics in several vertebrate and invertebrate cell lines demonstrate that ILHV is capable of replicating to high titers in a wide variety of potential host and vector species. Lastly, vector competence studies provide strong evidence for efficient infection of and potential transmission by Aedes species mosquitoes, despite ILHV's phylogenetically clustering with Culex vectored flaviviruses, suggesting ILHV is poised for emergence in the neotropics.

17.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425901

RESUMO

Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic cycles involving monkey hosts, spilled over into human transmission, and were translocated to the Americas, creating potential for spillback into neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We exposed native (cynomolgus macaque) or novel (squirrel monkey) hosts to mosquitoes infected with either sylvatic DENV or ZIKV and monitored viremia, natural killer cells, transmission to mosquitoes, cytokines, and neutralizing antibody titers. Unexpectedly, DENV transmission from both host species occurred only when serum viremia was undetectable or near the limit of detection. ZIKV replicated in squirrel monkeys to much higher titers than DENV and was transmitted more efficiently but stimulated lower neutralizing antibody titers. Increasing ZIKV viremia led to greater instantaneous transmission and shorter duration of infection, consistent with a replication-clearance trade-off.

18.
Viruses ; 14(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35458395

RESUMO

Chronic conditions like type II diabetes (T2DM) have long been known to exacerbate many infectious diseases. For many arboviruses, including Zika virus (ZIKV), severe outcomes, morbidity and mortality usually only occur in patients with such pre-existing conditions. However, the effects of T2DM and other pre-existing conditions on human blood (e.g., hypo/hyperinsulinemia, hyperglycemia and hyperlipidemia) that may impact infectivity of arboviruses for vectors is largely unexplored. We investigated whether the susceptibility of Aedes aegypti mosquitoes was affected when the mosquitoes fed on "diabetic" bloodmeals, such as bloodmeals composed of artificially glycosylated erythrocytes or those from viremic, diabetic mice (LEPRDB/DB). Increasing glycosylation of erythrocytes from hemoglobin A1c (HgbA1c) values of 5.5-5.9 to 6.2 increased the infection rate of a Galveston, Texas strain of Ae. aegypti to ZIKV strain PRVABC59 at a bloodmeal titer of 4.14 log10 FFU/mL from 0.0 to 40.9 and 42.9%, respectively. ZIKV was present in the blood of viremic LEPRDB/DB mice at similar levels as isogenic control C57BL/6J mice (3.3 log10 FFU/mL and 3.6 log10 FFU/mL, respectively. When mice sustained a higher ZIKV viremia of 4.6 log10 FFU/mL, LEPRDB/DB mice infected 36.3% of mosquitoes while control C57BL/6J mice with a viremia of 4.2 log10 FFU/mL infected only 4.1%. Additionally, when highly susceptible Ae. aegypti Rockefeller mosquitoes fed on homozygous LEPRDB/DB, heterozygous LEPRWT/DB, and control C57BL/6J mice with viremias of ≈ 4 log10 FFU/mL, 54%, 15%, and 33% were infected, respectively. In total, these data suggest that the prevalence of T2DM in a population may have a significant impact on ZIKV transmission and indicates the need for further investigation of the impacts of pre-existing metabolic conditions on arbovirus transmission.


Assuntos
Aedes , Arbovírus , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores , Viremia
19.
Artigo em Inglês | MEDLINE | ID: mdl-35262074

RESUMO

Background: Venezuelan equine encephalitis virus (VEEV) is an arbovirus endemic to the Americas. There are no approved vaccines or antivirals. TC-83 and V3526 are the best-characterized vaccine candidates for VEEV. Both are live-attenuated vaccines and have been associated with safety concerns, albeit less so for V3526. A previous attempt to improve the TC-83 vaccine focused on further attenuating the vaccine by adding mutations that altered the error incorporation rate of the RNA-dependent RNA polymerase (RdRp). Methods: The research presented here examines the impact of these RdRp mutations in V3526 by cloning the 3X and 4X strains, assessing vaccine efficacy against challenge in adult female CD-1 mice, examining neutralizing antibody titers, investigating vaccine tissue tropism, and testing the stability of the mutant strains. Results: Our results show that the V3526 RdRp mutants exhibited reduced tissue tropism in the spleen and kidney compared to wild-type V3526, while maintaining vaccine efficacy. Illumina sequencing showed that the RdRp mutations could revert to wild-type V3526. Conclusions: The observed genotypic reversion is likely of limited concern because wild-type V3526 is still an effective vaccine capable of providing protection. Our results indicate that the V3526 RdRp mutants may be a safer vaccine design than the original V3526.

20.
Microorganisms ; 9(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204370

RESUMO

The COVID-19 pandemic continues to affect millions of people worldwide. Although SARS-CoV-2 is a respiratory virus, there is growing concern that the disease could cause damage and pathology outside the lungs, including in the genital tract. Studies suggest that SARS-CoV-2 infection can damage the testes and reduce testosterone levels, but the underlying mechanisms are unknown and evidence of virus replication in testicular cells is lacking. We infected golden Syrian hamsters intranasally, a model for mild human COVID-19, and detected viral RNA in testes samples without histopathological changes up to one month post-infection. Using an ex vivo infection model, we detected SARS-CoV-2 replication in hamster testicular cells. Taken together, our data raise the possibility that testes damage observed in severe cases of COVID-19 could be partly explained by direct SARS-CoV-2 infection of the testicular cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA