RESUMO
BACKGROUND: Immune dysregulation often presents as autoimmunity, inflammation, and/or lymphoproliferation. Several germline genetic defects have been associated with immune dysregulation; they include heterozygous gain-of-function (GOF) mutations in IKZF1, an essential transcription factor for hematopoiesis containing zinc finger domains (ZFs). However, in a large percentage of patients, the genetic origin of their immunedysregulation remains undetermined. OBJECTIVE: A family with 2 members presenting immune dysregulation signs was studied to identify the genetic cause of their disease. METHODS: Whole exome sequencing, analysis of immunologic parameters, and functional assays (including Western blotting, electrophoretic mobility shift assay during the cell cycle, and TH cell differentiation) were performed. RESULTS: The 2 patients carried a novel heterozygous mutation in IKZF1 (IKZF1T398M). IKZF1 heterozygous mutations have previously been shown to be responsible for several distinct human immunologic diseases by directly affecting the ability of ZFs to bind to DNA or to dimerize. Herein, we showed that the IKZF1T398M, which is outside the ZFs, caused impaired phosphorylation of IKZF1, resulting in enhanced DNA-binding ability at the S phase of the cell cycle, reduction of the G1-S phase transition, and decreased proliferation. Confirming these data, similar functional alterations were observed with IKZF1T398A, but not with IKZF1T398D, mimicking dephosphorylation and phosphorylation, respectively. In T lymphocytes, expression of IKZF1T398M led to TH cell differentiation skewed toward TH2 cells. Thus, our data indicate that IKZF1T398M behaves as a GOF variant underlying immune dysregulation. CONCLUSION: Disturbed IKZF1 phosphorylation represents a novel GOF mechanism (GOF by loss of phosphorylation (termed as GOF-LOP) associated with immune dysregulation, highlighting the regulatory role of IKZF1 during cell cycle progression through phosphorylation.
Assuntos
Mutação com Ganho de Função , Fator de Transcrição Ikaros , Humanos , Fator de Transcrição Ikaros/genética , Fosforilação , Feminino , Masculino , Linhagem , AdultoRESUMO
BACKGROUND: Activated phosphoinositide-3-kinase δ syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking. OBJECTIVES: This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain-of-function (GOF) disease; and identify predictors of severity in APDS. METHODS: Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs. RESULTS: The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS. CONCLUSIONS: APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients.
Assuntos
Fosfatidilinositol 3-Quinase , Doenças da Imunodeficiência Primária , Humanos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases , Antígeno CTLA-4/genética , Mutação , Doenças da Imunodeficiência Primária/genética , Sistema de RegistrosRESUMO
The spectrum of somatic mutations in pediatric histiocytoses and their clinical implications are not fully characterized, especially for non-Langerhans cell histiocytosis (-LCH) subtypes. A cohort of 415 children with histiocytosis from the French histiocytosis registry was reviewed and analyzed for BRAFV600E . Most BRAFWT samples were analyzed by next-generation sequencing (NGS) with a custom panel of genes for histiocytosis and myeloid neoplasia. Of 415 case samples, there were 366 LCH, 1 Erdheim-Chester disease, 21 Rosai-Dorfman disease (RDD), 21 juvenile xanthogranuloma (JXG, mostly with severe presentation), and 6 malignant histiocytosis (MH). BRAFV600E was the most common mutation found in LCH (50.3%, n = 184). Among 105 non-BRAFV600E -mutated LCH case samples, NGS revealed mutations as follows: MAP2K1 (n = 44), BRAF exon 12 deletions (n = 26), and duplications (n = 8), other BRAF V600 codon mutation (n = 4), and non-MAP-kinase pathway genes (n = 5). Wild-type sequences were identified in 17.1% of samples. BRAFV600E was the only variant significantly correlated with critical presentations: organ-risk involvement and neurodegeneration. MAP-kinase pathway mutations were identified in seven RDD (mostly MAP2K1) and three JXG samples, but most samples were wild-type on NGS. Finally, two MH samples had KRAS mutations, and one had a novel BRAFG469R mutation. Rarely, we identified mutations unrelated to MAP-kinase pathway genes. In conclusion, we characterized the mutational spectrum of childhood LCH and clinical correlations of variants and subtypes. Variants responsible for JXG and RDD were not elucidated in more than half of the cases, calling for other sequencing approaches.
Assuntos
Doença de Erdheim-Chester , Histiocitose de Células de Langerhans , Humanos , Criança , Histiocitose de Células de Langerhans/genética , Proteínas Proto-Oncogênicas B-raf/genética , Doença de Erdheim-Chester/genética , Mutação , ÉxonsRESUMO
Despite major therapeutic improvements, children with relapsed/refractory Acute Myeloid Leukaemia still have poor outcomes and overall survival does not exceed 40%. New treatments are required to improve their outcome; Gemtuzumab ozogamicin (GO), an anti-CD33 immunoconjugate antibody, is a potent cytotoxic agent whose efficacy has been demonstrated mainly in adults. The main objective of this retrospective multicentre study was to assess the outcome of children treated, between February 2008 and August 2019, with GO at a single 4.5 mg/m2 dose, in combination with Fludarabine, Cytarabine and antssshracyclines, in context of a first relapse (n = 26) or refractory disease (n = 3). The remission rate was 83% (24/29 children) and 20 children (69%) were allografted. With a median follow-up of 1.2 years (range: 0.1-8), the overall survival was 49% (CI95% = 33; 72). Most common adverse event was febrile neutropenia with microbiological identification in 55% of cases. Veno-occlusive disease occurred in 6 patients (21%), of which 5 subvened after bone marrow transplantation, and resolved within 2-32 days (median 10.5 days). Administration of GO in combination with FLA-anthracyclines chemotherapy appears to be a good reinduction regimen for relapsed or refractory AML with a good safety profile. These results warrant larger prospective study.
Assuntos
Citarabina , Leucemia Mieloide Aguda , Adulto , Aminoglicosídeos/efeitos adversos , Antraciclinas/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Criança , Gemtuzumab , Humanos , Estudos Prospectivos , Vidarabina/análogos & derivadosAssuntos
Anemia Falciforme/tratamento farmacológico , Antidrepanocíticos/efeitos adversos , Hidroxiureia/efeitos adversos , Puberdade , Espermatogônias/patologia , Fatores Etários , Anemia Falciforme/patologia , Antidrepanocíticos/uso terapêutico , Criança , Pré-Escolar , Humanos , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Masculino , Tamanho da Amostra , Espermatogônias/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologiaRESUMO
Activated PI3-kinase-δ syndrome 2 (APDS2) is caused by autosomal dominant mutations in the PIK3R1 gene encoding the p85α, p55α, and p50α regulatory subunits. Most diagnosed APDS2 patients carry mutations affecting either the splice donor or splice acceptor sites of exon 11 of the PIK3R1 gene responsible for an alternative splice product and a shortened protein. The clinical presentation of APDS2 patients is highly variable, ranging from mild to profound combined immunodeficiency features as massive lymphoproliferation, increased susceptibility to bacterial and viral infections, bronchiectasis, autoimmune manifestations, and occurrence of cancer. Non-immunological features such as growth retardation and neurodevelopmental delay have been reported for APDS2 patients. Here, we describe a patient suffering from an APDS2 associated with a Smith-Magenis syndrome (SMS), a complex genetic disorder affecting, among others, neurological manifestations and review the literature describing neurodevelopmental impacts in APDS2 and other PIDs/monogenetic disorders associated with dysregulated PI3K signaling.
RESUMO
BACKGROUND: Mucosal-associated invariant T (MAIT) cells are semi-invariant T cells that recognize microbial antigens presented by the highly conserved MR1 molecule. MAIT cells are predominantly localized in the liver and barrier tissues and are potent effectors of antimicrobial defense. MAIT cells are very few at birth and accumulate gradually over a period of about 6 years during the infancy. The cytotoxic potential of MAIT cells, as well as their newly described regulatory and tissue repair functions, open the possibility of exploiting their properties in adoptive therapy. A prerequisite for their use as 'universal' cells would be a lack of alloreactive potential, which remains to be demonstrated. METHODS: We used ex vivo, in vitro and in vivo models to determine if human MAIT cells contribute to allogeneic responses. RESULTS: We show that recovery of MAIT cells after allogeneic hematopoietic stem cell transplantation recapitulates their slow physiological expansion in early childhood, independent of recovery of non-MAIT T cells. In vitro, signals provided by allogeneic cells and cytokines do not induce sustained MAIT cell proliferation. In vivo, human MAIT cells do not expand nor accumulate in tissues in a model of T-cell-mediated xenogeneic graft-versus-host disease in immunodeficient mice. CONCLUSIONS: Altogether, these results provide evidence that MAIT cells are devoid of alloreactive potential and pave the way for harnessing their translational potential in universal adoptive therapy overcoming barriers of HLA disparity. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number NCT02403089.
Assuntos
Imunidade Adaptativa/imunologia , Imunoterapia/métodos , Células T Invariantes Associadas à Mucosa/imunologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Hermansky-Pudlak syndrome (HPS) associates oculocutaneous albinism and systemic affections including platelet dense granules anomalies leading to bleeding diathesis and, depending on the form, pulmonary fibrosis, immunodeficiency, and/or granulomatous colitis. So far, 11 forms of autosomal recessive HPS caused by pathogenic variants in 11 different genes have been reported. We describe three HPS-8 consanguineous families with different homozygous pathogenic variants in BLOC1S3 (NM_212550.3), one of which is novel. These comprise two deletions leading to a reading frameshift (c.385_403del, c.338_341del) and one in frame deletion (c.444_467del). All patients have moderate oculocutaneous albinism and bleeding diathesis, but other HPS symptoms are not described. One patient diagnosed with HPS-8 suffered from lymphocyte-predominant Hodgkin lymphoma. The mild severity of HPS-8 is consistent with other HPS forms caused by variants in BLOC-1 complex coding genes (HPS-7, DTNBP1; HPS-9, BLOC1S6, HPS-11, BLOC1S5).
Assuntos
Proteínas de Transporte/genética , Síndrome de Hermanski-Pudlak/patologia , Mutação , Fenótipo , Adolescente , Criança , Feminino , Síndrome de Hermanski-Pudlak/genética , Humanos , Masculino , LinhagemRESUMO
Whooping cough's primary etiological agent is Bordetella pertussis. The closely related Bordetella parapertussis rarely causes severe disease. Here we report an unusual case of bacteremia caused by B. parapertussis, review the literature, and characterize the genomic sequence of the bacterial isolate in comparison with B. parapertussis isolates from respiratory infections.
RESUMO
Disease recurrence and graft dysfunction after allogeneic hematopoietic stem cell transplantation (allo-HSCT) currently remain among the major causes of treatment failure in malignant and non-malignant hematological diseases. A second allo-HSCT is a valuable therapeutic option to salvage those situations. During the 8th annual harmonization workshops of the french Society of bone marrow transplantation and cellular therapy (SFGM-TC), a designated working group reviewed the literature in order to elaborate unified guidelines on feasibility, indications, donor choice and conditioning in the case of a second allo-HSCT. In case of relapse, a second allo-HSCT with reduced intensity or non-myeloablative conditioning is a reasonable option, particularly in patients with a good performance status (Karnofsky/Lansky>80%), low co-morbidity score (EBMT score≤3), a longer remission duration after the first allo-HSCT (>6 months), and who present low disease burden at the time of second allo-HSCT. Matched related donors tend to be associated with better outcomes. In the presence of graft dysfunction (primary and secondary graft rejection), an immunoablative conditioning regimen is recommended. A donor change remains a valid option, especially in the absence of graft-versus-host disease after the first allo-HSCT.
Assuntos
Rejeição de Enxerto/terapia , Doenças Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/normas , Retratamento/normas , Condicionamento Pré-Transplante/normas , Fatores Etários , Transplante de Medula Óssea , Terapia Baseada em Transplante de Células e Tecidos , Seleção do Doador , Rejeição de Enxerto/imunologia , Histocompatibilidade , Humanos , Recidiva , Estudos Retrospectivos , Condicionamento Pré-Transplante/métodosRESUMO
Mucosal-associated invariant T (MAIT) cells are semi-invariant Vα7.2+ CD161highCD4- T cells that recognize microbial riboflavin precursor derivatives such as 5-OP-RU presented by MR1. Human MAIT cells are abundant in adult blood, but there are very few in cord blood. We longitudinally studied Vα7.2+ CD161high T cell and related subset levels in infancy and after cord blood transplantation. We show that Vα7.2+ and Vα7.2- CD161high T cells are generated early during gestation and likely share a common prenatal developmental program. Among cord blood Vα7.2+ CD161high T cells, the minority recognizing MR1:5-OP-RU display a TRAV/TRBV repertoire very similar to adult MAIT cells. Within a few weeks of life, only the MR1:5-OP-RU reactive Vα7.2+ CD161high T cells acquire a memory phenotype. Only these cells expand to form the adult MAIT pool, diluting out other Vα7.2+ CD161high and Vα7.2- CD161high populations, in a process requiring at least 6 years to reach adult levels. Thus, the high clonal size of adult MAIT cells is antigen-driven and likely due to the fine specificity of the TCRαß chains recognizing MR1-restricted microbial antigens.
Assuntos
Células T Invariantes Associadas à Mucosa/classificação , Subpopulações de Linfócitos T/classificação , Adulto , Antígenos de Bactérias/imunologia , Diferenciação Celular , Feminino , Sangue Fetal/citologia , Sangue Fetal/imunologia , Sangue Fetal/transplante , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Recém-Nascido , Infecções/imunologia , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/citologia , Células T Invariantes Associadas à Mucosa/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Gravidez , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologiaRESUMO
Busulfan (BU) dose adjustment following therapeutic drug monitoring contributes to better outcome of hematopoietic stem cell transplantation (HSCT). Further improvement could be achieved through genotype-guided BU dose adjustments. To investigate this aspect, polymorphism within glutathione S transferase genes were assessed. Particularly, promoter haplotypes of the glutathione S transferase A1 (GSTA1) were evaluated in vitro, with reporter gene assays and clinically, in a pediatric multi-center study (N =138) through association with BU pharmacokinetics (PK) and clinical outcomes. Promoter activity significantly differed between the GSTA1 haplotypes (p<0.001) supporting their importance in capturing PK variability. Four GSTA1 diplotype groups that significantly correlated with clearance (p=0.009) were distinguished. Diplotypes underlying fast and slow metabolizing capacity showed higher and lower BU clearance (ml/min/kg), respectively. GSTA1 diplotypes with slow metabolizing capacity were associated with higher incidence of sinusoidal obstruction syndrome, acute graft versus host disease and combined treatment-related toxicity (p<0.0005). Among other GST genes investigated, GSTP1 313GG correlated with acute graft versus host disease grade 1-4 (p=0.01) and GSTM1 non-null genotype was associated with hemorrhagic cystitis (p=0.003). This study further strengthens the hypothesis that GST diplotypes/genotypes could be incorporated into already existing population pharmacokinetic models for improving first BU dose prediction and HSCT outcomes. (No Clinicaltrials.gov identifier: NCT01257854. Registered 8 December 2010, retrospectively registered).