Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Kidney Int ; 100(5): 1092-1100, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153329

RESUMO

Biallelic deletions in the NPHP1 gene are the most frequent molecular defect of nephronophthisis, a kidney ciliopathy and leading cause of hereditary end-stage kidney disease. Nephrocystin 1, the gene product of NPHP1, is also expressed in photoreceptors where it plays an important role in intra-flagellar transport between the inner and outer segments. However, the human retinal phenotype has never been investigated in detail. Here, we characterized retinal features of 16 patients with homozygous deletions of the entire NPHP1 gene. Retinal assessment included multimodal imaging (optical coherence tomography, fundus autofluorescence) and visual function testing (visual acuity, full-field electroretinography, color vision, visual field). Fifteen patients had a mild retinal phenotype that predominantly affected cones, but with relative sparing of the fovea. Despite a predominant cone dysfunction, night vision problems were an early symptom in some cases. The consistent retinal phenotype on optical coherence tomography images included reduced reflectivity and often a granular appearance of the ellipsoid zone, fading or loss of the interdigitation zone, and mild outer retinal thinning. However, there were usually no obvious structural changes visible upon clinical examination and fundus autofluorescence imaging (occult retinopathy). More advanced retinal degeneration might occur with ageing. An identified additional CEP290 variant in one patient with a more severe retinal degeneration may indicate a potential role for genetic modifiers, although this requires further investigation. Thus, diagnostic awareness about this distinct retinal phenotype has implications for the differential diagnosis of nephronophthisis and for individual prognosis of visual function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Doenças Renais Císticas/genética , Doenças Retinianas , Eletrorretinografia , Angiofluoresceinografia , Humanos , Doenças Retinianas/genética , Tomografia de Coerência Óptica , Campos Visuais
2.
J Biol Chem ; 288(26): 18825-33, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671285

RESUMO

Fertilization in animals is a complex sequence of several biochemical events beginning with the insemination into the female reproductive tract and, finally, leading to embryogenesis. Studies by Kitajima and co-workers (Miyata, S., Sato, C., and Kitajima, K. (2007) Trends Glycosci. Glyc, 19, 85-98) demonstrated the presence of polysialic acid (polySia) on sea urchin sperm. Based on these results, we became interested in the potential involvement of sialic acid polymers in mammalian fertilization. Therefore, we isolated human sperm and performed analyses, including Western blotting and mild 1,2-diamino-4,5-methylenedioxybenzene-HPLC, that revealed the presence α2,8-linked polySia chains. Further analysis by a glyco-proteomics approach led to the identification of two polySia carriers. Interestingly, besides the neural cell adhesion molecule, the polysialyltransferase ST8SiaII has also been found to be a target for polysialylation. Further analysis of testis and epididymis tissue sections demonstrated that only epithelial cells of the caput were polySia-positive. During the epididymal transit, polySia carriers were partially integrated into the sperm membrane of the postacrosomal region. Because polySia is known to counteract histone as well as neutrophil extracellular trap-mediated cytotoxicity against host cells, which plays a role after insemination, we propose that polySia in semen represents a cytoprotective element to increase the number of vital sperm.


Assuntos
Moléculas de Adesão de Célula Nervosa/metabolismo , Processamento de Proteína Pós-Traducional , Sêmen/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Motivos de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Epididimo/metabolismo , Feminino , Fertilização , Humanos , Masculino , Camundongos , Microscopia de Fluorescência , Proteômica/métodos , Ratos , Espermatozoides/metabolismo
4.
Front Pediatr ; 6: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594088

RESUMO

Cystinosis is a rare autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene. Main dysfunction is a defective clearance of cystine from lysosomes that leads to accumulation of cystine crystals in every tissue of the body. There are three different forms: infantile nephropathic cystinosis, which is the most common form, juvenile nephropatic, and non-nephropathic cystinosis. Mostly, first symptom in infantile nephropathic cystinosis is renal Fanconi syndrome that occurs within the first year of life. Another prominent symptom is photophobia due to corneal crystal deposition. Cystine depletion therapy with cysteamine delays end-stage renal failure but does not stop progression of the disease. A new cysteamine formulation with delayed-release simplifies the administration schedule but still does not cure cystinosis. Even long-term depletion treatment resulting in bypassing the defective lysosomal transporter cannot reverse Fanconi syndrome. A future perspective offering a curative therapy may be transplantation of CTNS-carrying stem cells that has successfully been performed in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA