Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(17): 9909-9929, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36107774

RESUMO

DNA lesions in S phase threaten genome stability. The DNA damage tolerance (DDT) pathways overcome these obstacles and allow completion of DNA synthesis by the use of specialised translesion (TLS) DNA polymerases or through recombination-related processes. However, how these mechanisms coordinate with each other and with bulk replication remains elusive. To address these issues, we monitored the variation of replication intermediate architecture in response to ultraviolet irradiation using transmission electron microscopy. We show that the TLS polymerase η, able to accurately bypass the major UV lesion and mutated in the skin cancer-prone xeroderma pigmentosum variant (XPV) syndrome, acts at the replication fork to resolve uncoupling and prevent post-replicative gap accumulation. Repriming occurs as a compensatory mechanism when this on-the-fly mechanism cannot operate, and is therefore predominant in XPV cells. Interestingly, our data support a recombination-independent function of RAD51 at the replication fork to sustain repriming. Finally, we provide evidence for the post-replicative commitment of recombination in gap repair and for pioneering observations of in vivo recombination intermediates. Altogether, we propose a chronology of UV damage tolerance in human cells that highlights the key role of polη in shaping this response and ensuring the continuity of DNA synthesis.


Assuntos
Reparo do DNA , Xeroderma Pigmentoso , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Raios Ultravioleta , Xeroderma Pigmentoso/genética
2.
PLoS Pathog ; 17(4): e1009526, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872329

RESUMO

HIV-1 infects CD4 T lymphocytes (CD4TL) through binding the chemokine receptors CCR5 or CXCR4. CXCR4-using viruses are considered more pathogenic, linked to accelerated depletion of CD4TL and progression to AIDS. However, counterexamples to this paradigm are common, suggesting heterogeneity in the virulence of CXCR4-using viruses. Here, we investigated the role of the CXCR4 chemokine CXCL12 as a driving force behind virus virulence. In vitro, CXCL12 prevents HIV-1 from binding CXCR4 and entering CD4TL, but its role in HIV-1 transmission and propagation remains speculative. Through analysis of thirty envelope glycoproteins (Envs) from patients at different stages of infection, mostly treatment-naïve, we first interrogated whether sensitivity of viruses to inhibition by CXCL12 varies over time in infection. Results show that Envs resistant (RES) to CXCL12 are frequent in patients experiencing low CD4TL levels, most often late in infection, only rarely at the time of primary infection. Sensitivity assays to soluble CD4 or broadly neutralizing antibodies further showed that RES Envs adopt a more closed conformation with distinct antigenicity, compared to CXCL12-sensitive (SENS) Envs. At the level of the host cell, our results suggest that resistance is not due to improved fusion or binding to CD4, but owes to viruses using particular CXCR4 molecules weakly accessible to CXCL12. We finally asked whether the low CD4TL levels in patients are related to increased pathogenicity of RES viruses. Resistance actually provides viruses with an enhanced capacity to enter naive CD4TL when surrounded by CXCL12, which mirrors their situation in lymphoid organs, and to deplete bystander activated effector memory cells. Therefore, RES viruses seem more likely to deregulate CD4TL homeostasis. This work improves our understanding of the pathophysiology and the transmission of HIV-1 and suggests that RES viruses' receptors could represent new therapeutic targets to help prevent CD4TL depletion in HIV+ patients on cART.


Assuntos
Antivirais/metabolismo , Quimiocina CXCL12/metabolismo , Infecções por HIV/virologia , HIV-1/patogenicidade , Receptores CXCR4/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/fisiopatologia , Infecções por HIV/transmissão , HIV-1/fisiologia , Homeostase , Humanos , Proteínas do Envelope Viral/metabolismo , Virulência
3.
PLoS Pathog ; 14(12): e1007432, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30521629

RESUMO

CCR5 plays immune functions and is the coreceptor for R5 HIV-1 strains. It exists in diverse conformations and oligomerization states. We interrogated the significance of the CCR5 structural diversity on HIV-1 infection. We show that envelope glycoproteins (gp120s) from different HIV-1 strains exhibit divergent binding levels to CCR5 on cell lines and primary cells, but not to CD4 or the CD4i monoclonal antibody E51. This owed to differential binding of the gp120s to different CCR5 populations, which exist in varying quantities at the cell surface and are differentially expressed between different cell types. Some, but not all, of these populations are antigenically distinct conformations of the coreceptor. The different binding levels of gp120s also correspond to differences in their capacity to bind CCR5 dimers/oligomers. Mutating the CCR5 dimerization interface changed conformation of the CCR5 homodimers and modulated differentially the binding of distinct gp120s. Env-pseudotyped viruses also use particular CCR5 conformations for entry, which may differ between different viruses and represent a subset of those binding gp120s. In particular, even if gp120s can bind both CCR5 monomers and oligomers, impairment of CCR5 oligomerization improved viral entry, suggesting that HIV-1 prefers monomers for entry. From a functional standpoint, we illustrate that the nature of the CCR5 molecules to which gp120/HIV-1 binds shapes sensitivity to inhibition by CCR5 ligands and cellular tropism. Differences exist in the CCR5 populations between T-cells and macrophages, and this is associated with differential capacity to bind gp120s and to support viral entry. In macrophages, CCR5 structural plasticity is critical for entry of blood-derived R5 isolates, which, in contrast to prototypical M-tropic strains from brain tissues, cannot benefit from enhanced affinity for CD4. Collectively, our results support a role for CCR5 heterogeneity in diversifying the phenotypic properties of HIV-1 isolates and provide new clues for development of CCR5-targeting drugs.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Receptores CCR5/química , Receptores CCR5/metabolismo , Internalização do Vírus , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Fenótipo , Ligação Proteica
4.
Proc Natl Acad Sci U S A ; 110(23): 9475-80, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23696662

RESUMO

CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/fisiopatologia , HIV-1/fisiologia , Conformação Proteica , Receptores CCR5/química , Internalização do Vírus , Linhagem Celular , Quimiocinas/metabolismo , Endocitose/fisiologia , Infecções por HIV/metabolismo , HIV-1/metabolismo , Humanos , Ensaio Radioligante , Receptores CCR5/metabolismo
5.
Biol Methods Protoc ; 5(1): bpaa012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913896

RESUMO

DNA intermediate structures are formed in all major pathways of DNA metabolism. Transmission electron microscopy (TEM) is a tool of choice to study their choreography and has led to major advances in the understanding of these mechanisms, particularly those of homologous recombination (HR) and replication. In this article, we describe specific TEM procedures dedicated to the structural characterization of DNA intermediates formed during these processes. These particular DNA species contain single-stranded DNA regions and/or branched structures, which require controlling both the DNA molecules spreading and their staining for subsequent visualization using dark-field imaging mode. Combining BAC (benzyl dimethyl alkyl ammonium chloride) film hyperphase with positive staining and dark-field TEM allows characterizing synthetic DNA substrates, joint molecules formed during not only in vitro assays mimicking HR, but also in vivo DNA intermediates.

6.
J Virol Methods ; 236: 184-195, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451265

RESUMO

The trimeric HIV-1 envelope (Env) glycoproteins gp120 and gp41 mediate virus entry into target cells by engaging CD4 and the coreceptors CCR5 or CXCR4 at the cell surface and driving membrane fusion. Receptor/gp120 interactions regulate the virus life cycle, HIV infection transmission and pathogenesis. Env is also the target of neutralizing antibodies. Efforts have thus been made to produce soluble HIV-1 glycoproteins to develop vaccines and study the role and mechanisms of HIV/receptor interactions. However, production and purification of Env glycoproteins and their functional assessment has to cope with multiple obstacles. These include difficulties in amplifying and cloning env sequences and setting up receptor binding assays that are suitable for studies on large collections of glycoproteins, flexible enough to adapt to Env and receptor structural heterogeneities, and allow recapitulating the receptor binding properties of virion-associated Env trimers. Here we identify these difficulties and present protocols to produce primary gp120 and determination of their binding properties to receptors. The receptor binding assays confirmed that the produced glycoproteins are competent for binding CD4 and undergo proper CD4-induced conformational changes required for interaction with CCR5. These assays may help elucidate the role of gp120/receptor interactions in the pathophysiology of HIV infection and develop HIV-1 entry inhibitors.


Assuntos
Clonagem Molecular , Expressão Gênica , Biologia Molecular/métodos , Proteínas Recombinantes/isolamento & purificação , Produtos do Gene env do Vírus da Imunodeficiência Humana/isolamento & purificação , Guias como Assunto , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
7.
Sci Signal ; 6(273): ra30.1-11, S1-3, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23633677

RESUMO

Chemokines promote the recruitment of leukocytes to sites of infection and inflammation by activating conventional heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). Chemokines are also recognized by a set of atypical chemokine receptors (ACRs), which cannot induce directional cell migration but are required for the generation of chemokine gradients in tissues. ACRs are presently considered "silent receptors" because no G protein-dependent signaling activity is observed after their engagement by cognate ligands. We report that engagement of the ACR D6 by its ligands activates a ß-arrestin1-dependent, G protein-independent signaling pathway that results in the phosphorylation of the actin-binding protein cofilin through the Rac1-p21-activated kinase 1 (PAK1)-LIM kinase 1 (LIMK1) cascade. This signaling pathway is required for the increased abundance of D6 protein at the cell surface and for its chemokine-scavenging activity. We conclude that D6 is a signaling receptor that exerts its regulatory function on chemokine-mediated responses in inflammation and immunity through a distinct signaling pathway.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Arrestinas/metabolismo , Receptores CCR10/metabolismo , Transdução de Sinais/fisiologia , Fatores de Despolimerização de Actina/genética , Animais , Arrestinas/genética , Células CHO , Cricetinae , Cricetulus , Humanos , Quinases Lim/genética , Quinases Lim/metabolismo , Receptores CCR10/genética , beta-Arrestinas , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Receptor D6 de Quimiocina
8.
Virology ; 406(2): 228-40, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20701941

RESUMO

The hepatitis C virus (HCV) serine protease (NS3/4A) processes the NS3-NS5B segment of the viral polyprotein and also cleaves host proteins involved in interferon signaling, making it an important target for antiviral drug discovery and suggesting a wide breadth of substrate specificity. We compared substrate specificities of the HCV protease with that of the GB virus B (GBV-B), a distantly related nonhuman primate hepacivirus, by exchanging amino acid sequences at the NS4B/5A and/or NS5A/5B cleavage junctions between these viruses within the backbone of subgenomic replicons. This mutagenesis study demonstrated that the GBV-B protease had a broader substrate tolerance, a feature corroborated by structural homology modeling. However, despite efficient polyprotein processing, GBV-B RNAs containing HCV sequences at the C-terminus of NS4B had a pseudo-lethal replication phenotype. Replication-competent revertants contained second-site substitutions within the NS3 protease or NS4B N-terminus, providing genetic evidence for an essential interaction between NS3 and NS4B during genome replication.


Assuntos
Replicação do DNA , Vírus GB B/enzimologia , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Infecções por Flaviviridae/virologia , Vírus GB B/química , Vírus GB B/genética , Vírus GB B/metabolismo , Hepacivirus/química , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/virologia , Hepatite Viral Humana/virologia , Humanos , Dados de Sequência Molecular , Ligação Proteica , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Proteínas não Estruturais Virais/genética , Replicação Viral
9.
PLoS One ; 4(2): e4419, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19204793

RESUMO

GB virus B (GBV-B) is closely related to hepatitis C virus (HCV), infects small non-human primates, and is thus a valuable surrogate for studying HCV. Despite significant differences, the 5' nontranslated RNAs (NTRs) of these viruses fold into four similar structured domains (I-IV), with domains II-III-IV comprising the viral internal ribosomal entry site (IRES). We previously reported the in vivo rescue of a chimeric GBV-B (vGB/III(HC)) containing HCV sequence in domain III, an essential segment of the IRES. We show here that three mutations identified within the vGB/III(HC) genome (within the 3'NTR, upstream of the poly(U) tract, and NS5A coding sequence) are necessary and sufficient for production of this chimeric virus following intrahepatic inoculation of synthetic RNA in tamarins, and thus apparently compensate for the presence of HCV sequence in domain III. To assess the mechanism(s) underlying these compensatory mutations, and to determine whether 5'NTR subdomains participating in genome replication do so in a virus-specific fashion, we constructed and evaluated a series of chimeric subgenomic GBV-B replicons in which various 5'NTR subdomains were substituted with their HCV homologs. Domains I and II of the GBV-B 5'NTR could not be replaced with HCV sequence, indicating that they contain essential, virus-specific RNA replication elements. In contrast, domain III could be swapped with minimal loss of genome replication capacity in cell culture. The 3'NTR and NS5A mutations required for rescue of the related chimeric virus in vivo had no effect on replication of the subgenomic GBneoD/III(HC) RNA in vitro. The data suggest that in vivo fitness of the domain III chimeric virus is dependent on a cooperative interaction between the 5'NTR, 3'NTR and NS5A at a step in the viral life cycle subsequent to genome replication, most likely during particle assembly. Such a mechanism may be common to all hepaciviruses.


Assuntos
Vírus GB B/fisiologia , Hepacivirus/fisiologia , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Vírus GB B/genética , Vírus GB B/patogenicidade , Genoma Viral/genética , Hepacivirus/genética , Hepacivirus/patogenicidade , Humanos , Dados de Sequência Molecular , Mutação/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA não Traduzido/química , RNA não Traduzido/genética , RNA Viral/química , RNA Viral/genética , Replicon , Saguinus/virologia , Análise de Sequência de RNA , Replicação Viral
10.
Mol Ther ; 15(8): 1452-62, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17505476

RESUMO

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and hepatocellular carcinoma, yet fully efficacious treatments are missing. In this study, we investigated RNA interference (RNAi), a specific gene silencing process mediated by small interfering RNA (siRNA) duplexes, as an antiviral strategy against HCV. Synthetic siRNAs were designed to target conserved sequences of the HCV 5' nontranslated region (NTR) located in a functional, stem-loop structured domain of the HCV internal ribosome entry site (IRES), which is crucial for initiation of polyprotein translation. Several siRNAs dramatically reduced or even abrogated the replication of selectable subgenomic HCV replicons upon cotransfection of human hepatoma cells with viral target and siRNAs, or upon transfection of cells supporting autonomous replication of HCV replicon with siRNAs. Importantly, three siRNAs also proved capable of strongly inhibiting virus production in cell culture. One siRNA, targeting a sequence that is highly conserved across all genotypes and forms a critical pseudoknot structure involved in translation, was identified as the most promising therapeutic candidate. These results indicate that the HCV life cycle can be efficiently blocked by using properly-designed siRNAs that target functionally important, highly conserved sequences of the HCV IRES. This finding offers a novel approach towards developing IRES-based antiviral treatment for chronic HCV infections.


Assuntos
Hepacivirus/fisiologia , RNA Interferente Pequeno/genética , Sequência de Bases , Linhagem Celular Tumoral , Replicação do DNA , Genoma Viral/genética , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA não Traduzido/química , RNA não Traduzido/genética , Replicon/genética
11.
J Virol ; 81(2): 964-76, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17093192

RESUMO

Understanding the mechanisms of hepatitis C virus (HCV) pathogenesis and persistence has been hampered by the lack of small, convenient animal models. GB virus B (GBV-B) is phylogenetically the closest related virus to HCV. It causes generally acute and occasionally chronic hepatitis in small primates and is used as a surrogate model for HCV. It is not known, however, whether GBV-B has evolved strategies to circumvent host innate defenses similar to those of HCV, a property that may contribute to HCV persistence in vivo. We show here in cultured tamarin hepatocytes that GBV-B NS3/4A protease, but not a related catalytically inactive mutant, effectively blocks innate intracellular antiviral responses signaled through the RNA helicase, retinoic acid-inducible gene I (RIG-I), an essential sensor molecule that initiates host defenses against many RNA viruses, including HCV. GBV-B NS3/4A protease specifically cleaves mitochondrial antiviral signaling protein (MAVS; also known as IPS-1/Cardif/VISA) and dislodges it from mitochondria, thereby disrupting its function as a RIG-I adaptor and blocking downstream activation of both interferon regulatory factor 3 and nuclear factor kappa B. MAVS cleavage and abrogation of virus-induced interferon responses were also observed in Huh7 cells supporting autonomous replication of subgenomic GBV-B RNAs. Our data indicate that, as in the case of HCV, GBV-B has evolved to utilize its major protease to disrupt RIG-I signaling and impede innate antiviral defenses. These data provide further support for the use of GBV-B infection in small primates as an accurate surrogate model for deciphering virus-host interactions in hepacivirus pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus GB B/patogenicidade , Receptores do Ácido Retinoico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Regulação da Expressão Gênica , Células HeLa , Hepatócitos/virologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , NF-kappa B/metabolismo , Sinais Direcionadores de Proteínas , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Receptores do Ácido Retinoico/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
12.
J Virol ; 80(21): 10692-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16956954

RESUMO

Immunoglobulin A (IgA) monoclonal antibodies (MAbs) directed at the conserved inner core protein VP6 of rotavirus, such as the IgA7D9 MAb, provide protective immunity in adult and suckling mice when delivered systemically. While these antibodies do not have traditional in vitro neutralizing activity, they could mediate their antiviral activity either by interfering with the viral replication cycle along the IgA secretory pathway or by acting at mucosal surfaces as secretory IgA and excluding virus from target enterocytes. We sought to determine the critical step at which antirotaviral activity was initiated by the IgA7D9 MAb. The IgA7D9 MAb appeared to directly interact with purified triple-layer viral particles, as shown by immunoprecipitation and immunoblotting. However, protection was not conferred by passively feeding mice with the secretory IgA7D9 MAb. This indicates that the secretory IgA7D9 MAb does not confer protection by supplying immune exclusion activity in vivo. We next evaluated the capacity of polymeric IgA7D9 MAb to neutralize rotavirus intracellularly during transcytosis. We found that when polymeric IgA7D9 MAb was applied to the basolateral pole of polarized Caco-2 intestinal cells, it significantly reduced viral replication and prevented the loss of barrier function induced by apical exposure of the cell monolayer to rotavirus, supporting the conclusion that the antibody carries out its antiviral activity intracellularly. These findings identify a mechanism whereby the well-conserved immunodominant VP6 protein can function as a target for heterotypic antibodies and protective immunity.


Assuntos
Anticorpos Antivirais/farmacologia , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Imunoglobulina A Secretora/farmacologia , Rotavirus/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Células CACO-2 , Humanos , Intestinos/imunologia , Intestinos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Rotavirus/patogenicidade , Rotavirus/fisiologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/terapia , Infecções por Rotavirus/virologia , Replicação Viral/imunologia
13.
J Gen Virol ; 86(Pt 11): 3143-3151, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227238

RESUMO

The rotavirus capsid is made up of three concentric protein layers. The outer layer, consisting of VP7 and VP4, is lost during virus entry into the host cell. Rotavirus field isolates can be adapted to high-titre growth in tissue culture by treatment with trypsin and by supplementing the culture medium with trypsin, which cleaves VP4 into two fragments, VP8* and VP5*. It is known that protease inhibitors reduce the replication of rotavirus in vitro and in vivo and also diminish disease symptoms in a mouse model. To clarify the molecular basis of these observations, a series of assays were conducted on purified rotavirus particles grown in the presence of trypsin. Results of HPLC and mass spectrometry followed by N-terminal sequencing showed that viral particles contain molecules of trypsin. When associated with triple-layer particles (TLPs), trypsin is inactive and not accessible to protease inhibitors, such as aprotinin. When the outer layer is solubilized by calcium-chelating agents, VP5*, VP8* and VP7 are released and the associated trypsin is activated, allowing cleavage of the viral capsid proteins, as well as other exogenous proteins. It is shown that addition of trypsin inhibitors significantly reduces synthesis of viral mRNA and viral proteins in cells and has a major inhibitory effect if present when virus enters the cell. These data indicate that incorporation of trypsin into rotavirus particles may enhance its infectivity.


Assuntos
Antígenos Virais/metabolismo , Proteínas do Capsídeo/metabolismo , Rotavirus/química , Tripsina/metabolismo , Antígenos Virais/química , Proteínas do Capsídeo/química , Cromatografia Líquida de Alta Pressão , Modelos Biológicos , Vírion
14.
J Virol ; 76(16): 8110-7, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12134016

RESUMO

Protective immunization against rotavirus (RV) can be achieved with heterologous RV, i.e., virus isolated from another species, and with heterologous inner core VP2 and VP6 proteins assembled as virus-like particles (VLP). Although the antigenically conserved VP6 protein does not induce in vitro-neutralizing antibodies, it may, however, elicit immunoglobulins (Ig) involved in heterologous protection, as some IgA against VP6 prevent RV infection in a backpack mouse model. The protective role of Ig directed to the RV inner core proteins VP2 and VP6 was investigated in J-chain-deficient mice (J chain(-/-)), which have a defect in the polymeric Ig receptor (pIgR)-mediated transcytosis of IgA and IgM. J chain(-/-) mice and wild-type (WT) mice were intranasally vaccinated with bovine RV-derived VLP2/6 and then challenged with highly infectious murine ECw RV. Whereas WT mice were totally protected, immunized J chain(-/-) mice shed RV for several days. In addition, naïve J chain(-/-) mice exhibited a 2-day delay in clearing RV compared with WT mice. The immunized J chain(-/-) mice displayed unaltered VLP2/6-specific B-cell numbers in spleen and in mesenteric nodes and similar levels of serum anti-VLP2/6 Ig, confirming that the adaptive B-cell response is preserved in J chain(-/-) mice. These results indicate that J-chain-mediated transcytosis of Ig participates in the clearance of RV and that epithelial pIgR-mediated transport of Ig is involved in the heterologous protection induced by VLP2/6.


Assuntos
Capsídeo/imunologia , Imunidade nas Mucosas , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Rotavirus/imunologia , Administração Intranasal , Animais , Antígenos Virais/administração & dosagem , Linfócitos B/imunologia , Transporte Biológico Ativo , Capsídeo/administração & dosagem , Proteínas do Capsídeo , Bovinos , Imunoglobulina A Secretora/biossíntese , Cadeias J de Imunoglobulina/genética , Cadeias J de Imunoglobulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Especificidade da Espécie , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA