Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(11): e1011841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38033163

RESUMO

Macrophages play a key role in disseminated cryptococcosis, a deadly fungal disease caused by Cryptococcus neoformans. This opportunistic infection can arise following the reactivation of a poorly characterized latent infection attributed to dormant C. neoformans. Here, we investigated the mechanisms underlying reactivation of dormant C. neoformans using an in vitro co-culture model of viable but non-culturable (VBNC; equivalent of dormant) yeast cells with bone marrow-derived murine macrophages (BMDMs). Comparative transcriptome analysis of BMDMs incubated with log, stationary phase or VBNC cells of C. neoformans showed that VBNC cells elicited a reduced transcriptional modification of the macrophage but retaining the ability to regulate genes important for immune response, such as NLRP3 inflammasome-related genes. We further confirmed the maintenance of the low immunostimulatory capacity of VBNC cells using multiplex cytokine profiling, and analysis of cell wall composition and dectin-1 ligands exposure. In addition, we evaluated the effects of classic (M1) or alternative (M2) macrophage polarization on VBNC cells. We observed that intracellular residence sustained dormancy, regardless of the polarization state of macrophages and despite indirect detection of pantothenic acid (or its derivatives), a known reactivator for VBNC cells, in the C. neoformans-containing phagolysosome. Notably, M0 and M2, but not M1 macrophages, induced extracellular reactivation of VBNC cells by the secretion of extracellular vesicles and non-lytic exocytosis. Our results indicate that VBNC cells retain the low immunostimulatory profile required for persistence of C. neoformans in the host. We also describe a pro-pathogen role of macrophage-derived extracellular vesicles in C. neoformans infection and reinforce the impact of non-lytic exocytosis and the macrophage profile on the pathophysiology of cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Vesículas Extracelulares , Animais , Camundongos , Cryptococcus neoformans/genética , Criptococose/microbiologia , Macrófagos , Exocitose
2.
Med Mycol ; 61(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960963

RESUMO

Germline-encoded pattern recognition receptors, particularly C-type lectin receptors (CLRs), are essential for phagocytes to sense invading fungal cells. Among CLRs, Dectin-2 (encoded by Clec4n) plays a critical role in the antifungal immune response as it recognizes high-mannose polysaccharides on the fungal cell wall, triggering phagocyte functional activities and ultimately determining adaptive responses. Here, we assessed the role of Dectin-2 on the course of primary Paracoccidioides brasiliensis systemic infection in mice with Dectin-2-targeted deletion. Paracoccidioides brasiliensis constitutes the principal etiologic agent of paracoccidioidomycosis, the most prominent invasive mycosis in Latin American countries. The deficiency of Dectin-2 resulted in shortened survival rates, high lung fungal burden, and increased lung pathology in mice infected with P. brasiliensis. Consistently, dendritic cells (DCs) from mice lacking Dectin-2 infected ex vivo with P. brasiliensis showed impaired secretion of several proinflammatory and regulatory cytokines, including TNF-α, IL-1ß, IL-6, and IL-10. Additionally, when cocultured with splenic lymphocytes, DCs were less efficient in promoting a type 1 cytokine pattern secretion (i.e., IFN-γ). In macrophages, Dectin-2-mediated signaling was required to ensure phagocytosis and fungicidal activity associated with nitric oxide production. Overall, Dectin-2-mediated signaling is critical to promote host protection against P. brasiliensis infection, and its exploitation might lead to the development of new vaccines and immunotherapeutic approaches.


We report a critical role of the innate immune receptor Dectin-2 during Paracoccidioides brasiliensis infection. Fungal sensing by Dectin-2 improved the survival of mice and lowered fungal burden. Further, Dectin-2 was required for cytokine production, phagocytosis, and fungal killing by phagocytes.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Camundongos , Animais , Fagócitos/patologia , Lectinas Tipo C/metabolismo , Macrófagos , Paracoccidioidomicose/veterinária
3.
Mediators Inflamm ; 2020: 3412763, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33380899

RESUMO

Cryptococcus neoformans is an encapsulated yeast that causes disease mainly in immunosuppressed hosts. It is considered a facultative intracellular pathogen because of its capacity to survive and replicate inside phagocytes, especially macrophages. This ability is heavily dependent on various virulence factors, particularly the glucuronoxylomannan (GXM) component of the polysaccharide capsule. Inflammasome activation in phagocytes is usually protective against fungal infections, including cryptococcosis. Nevertheless, recognition of C. neoformans by inflammasome receptors requires specific changes in morphology or the opsonization of the yeast, impairing proper inflammasome function. In this context, we analyzed the impact of molecules secreted by C. neoformans B3501 strain and its acapsular mutant Δcap67 in inflammasome activation in an in vitro model. Our results showed that conditioned media derived from B3501 was capable of inhibiting inflammasome-dependent events (i.e., IL-1ß secretion and LDH release via pyroptosis) more strongly than conditioned media from Δcap67, regardless of GXM presence. We also demonstrated that macrophages treated with conditioned media were less responsive against infection with the virulent strain H99, exhibiting lower rates of phagocytosis, increased fungal burdens, and enhanced vomocytosis. Moreover, we showed that the aromatic metabolite DL-Indole-3-lactic acid (ILA) and DL-p-Hydroxyphenyllactic acid (HPLA) were present in B3501's conditioned media and that ILA alone or with HPLA is involved in the regulation of inflammasome activation by C. neoformans. These results were confirmed by in vivo experiments, where exposure to conditioned media led to higher fungal burdens in Acanthamoeba castellanii culture as well as in higher fungal loads in the lungs of infected mice. Overall, the results presented show that conditioned media from a wild-type strain can inhibit a vital recognition pathway and subsequent fungicidal functions of macrophages, contributing to fungal survival in vitro and in vivo and suggesting that secretion of aromatic metabolites, such as ILA, during cryptococcal infections fundamentally impacts pathogenesis.


Assuntos
Cryptococcus neoformans/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Polissacarídeos/química , Animais , Caspase 1/metabolismo , Criptococose , Meios de Cultivo Condicionados , Células Dendríticas/metabolismo , Imunofluorescência , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Polissacarídeos/metabolismo , Fatores de Virulência/metabolismo
5.
Front Cell Infect Microbiol ; 11: 622899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796477

RESUMO

The earliest interaction between macrophages and Paracoccidioides brasiliensis is particularly important in paracoccidioidomycosis (PCM) progression, and surface proteins play a central role in this process. The present study investigated the contribution of ß2 integrin in P. brasiliensis-macrophage interaction and PCM progression. We infected ß2-low expression (CD18low) and wild type (WT) mice with P. brasiliensis 18. Disease progression was evaluated for fungal burden, lung granulomatous lesions, nitrate levels, and serum antibody production. Besides, the in vitro capacity of macrophages to internalize and kill fungal yeasts was investigated. Our results revealed that CD18low mice infected with Pb18 survived during the time analyzed; their lungs showed fewer granulomas, a lower fungal load, lower levels of nitrate, and production of high levels of IgG1 in comparison to WT animals. Our results revealed that in vitro macrophages from CD18low mice slowly internalized yeast cells, showing a lower fungal burden compared to WT cells. The migration capacity of macrophages was compromised and showed a higher intensity in the lysosome signal when compared with WT mice. Our data suggest that ß2 integrins play an important role in fungal survival inside macrophages, and once phagocytosed, the macrophage may serve as a protective environment for P. brasiliensis.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Animais , Antígenos CD18 , Pulmão , Macrófagos , Camundongos
6.
Microorganisms ; 8(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217920

RESUMO

Cryptococcus neoformans is a human pathogenic fungus that mainly afflicts immunocompromised patients. One of its virulence strategies is the production of extracellular vesicles (EVs), containing cargo with immunomodulatory properties. We evaluated EV's characteristics produced by capsular and acapsular strains of C. neoformans (B3501 and ΔCap67, respectively) growing in nutritionally poor or rich media and co-cultures with bone marrow-derived macrophages or dendritic cells from C57BL/6 mice. EVs produced under a poor nutritional condition displayed a larger hydrodynamic size, contained more virulence compounds, and induced a more robust inflammatory pattern than those produced in a rich nutritional medium, independently of strain. We treated infected mice with EVs produced in the rich medium, and the EVs inhibited more genes related to the inflammasome than untreated infected mice. These findings suggest that the EVs participate in the pathogenic processes that result in the dissemination of C. neoformans. Thus, these results highlight the versatility of EVs' properties during infection by C. neoformans in different tissues and support ongoing efforts to harness EVs to prevent and treat cryptococcosis.

7.
Front Immunol ; 8: 1572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209318

RESUMO

Fonsecaea pedrosoi is the main etiologic agent of chromoblastomycosis (CBM), one of the most prevalent subcutaneous mycosis in tropical and subtropical countries. CBM is a poorly characterized chronic infection that commonly starts after transcutaneous inoculation of conidia and saprophytic hyphae of F. pedrosoi. Recently, we have shown that unlike conidia, hyphae and muriform cells (the parasitic morphotype) of F. pedrosoi promotes an intense inflammatory response pattern in vivo, which comprises the production of an inflammasome-derived cytokine, IL-1ß. Nonetheless, the mechanisms underlying IL-1ß production and maturation upon F. pedrosoi infection and its functional output in the course of CBM remains unknown. We show here that F. pedrosoi hyphae, differently from conidia, induce IL-1ß secretion in both bone marrow-derived dendritic cells and macrophages. Using inhibitors and knockout cells, we demonstrated that the mechanisms underlying IL-1ß production by hyphae-infected macrophages were dependent on dectin-1, -2, and -3 receptors and the Syk-NF-kB signaling pathway. Furthermore, F. pedrosoi promoted a NLRP3-dependent inflammasome activation, which required potassium efflux, reactive oxygen species production, phagolysosomal acidification, and cathepsin B release as triggers. IL-1ß processing and release was mediated primarily by caspase-1 and, to a lesser extent, by caspase-8-dependent cleavage. Finally, we showed using a murine CBM model that F. pedrosoi elicits a NLRP3-regulated IL-1ß and interleukin-18 release in vivo, but without NLRP3 inflammasome activation interfering in the course of the experimental infection.

8.
PLoS Negl Trop Dis ; 7(12): e2595, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340123

RESUMO

Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis (PCM), the most prevalent systemic mycosis that is geographically confined to Latin America. The pro-inflammatory cytokine IL-1ß that is mainly derived from the activation of the cytoplasmic multiprotein complex inflammasome is an essential host factor against opportunistic fungal infections; however, its role in infection with a primary fungal pathogen, such as P. brasiliensis, is not well understood. In this study, we found that murine bone marrow-derived dendritic cells responded to P. brasiliensis yeast cells infection by releasing IL-1ß in a spleen tyrosine kinase (Syk), caspase-1 and NOD-like receptor (NLR) family member NLRP3 dependent manner. In addition, P. brasiliensis-induced NLRP3 inflammasome activation was dependent on potassium (K+) efflux, reactive oxygen species production, phagolysosomal acidification and cathepsin B release. Finally, using mice lacking the IL-1 receptor, we demonstrated that IL-1ß signaling has an important role in killing P. brasiliensis by murine macrophages. Altogether, our results demonstrate that the NLRP3 inflammasome senses and responds to P. brasiliensis yeast cells infection and plays an important role in host defense against this fungus.


Assuntos
Proteínas de Transporte/imunologia , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Interações Hospedeiro-Parasita , Inflamassomos/imunologia , Paracoccidioides/imunologia , Animais , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA