Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102805, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341849

RESUMO

Spinal column tumors can be difficult to process for single-cell omic studies, given the heterogeneity in tissue. Here, we present a protocol for operating room-to-benchtop single-cell processing of clinical specimens from a prostate cancer patient. We describe steps for sample homogenization, red blood cell lysis, cryopreservation, and single-cell sequencing analysis. This protocol can be used to identify prognostic markers and therapeutic targets for patients with osseous spine metastases and better inform eligibility for clinical trials.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Microambiente Tumoral/genética , Neoplasias da Próstata/genética , Coluna Vertebral , Análise de Sequência de RNA/métodos
2.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562874

RESUMO

Survival for metastatic breast cancer is low and thus, continued efforts to treat and prevent metastatic progression are critical. Estrogen is shown to promote aggressive phenotypes in multiple cancer models irrespective of estrogen receptor (ER) status. Similarly, UDP-Glucose 6-dehydrogenase (UGDH) a ubiquitously expressed enzyme involved in extracellular matrix precursors, as well as hormone processing increases migratory and invasive properties in cancer models. While the role of UGDH in cellular migration is defined, how it intersects with and impacts hormone signaling pathways associated with tumor progression in metastatic breast cancer has not been explored. Here we demonstrate that UGDH knockdown blunts estrogen-induced tumorigenic phenotypes (migration and colony formation) in ER+ and ER- breast cancer in vitro. Knockdown of UGDH also inhibits extravasation of ER- breast cancer ex vivo, primary tumor growth and animal survival in vivo in both ER+ and ER- breast cancer. We also use single cell RNA-sequencing to demonstrate that our findings translate to a human breast cancer clinical specimen. Our findings support the role of estrogen and UGDH in breast cancer progression provide a foundation for future studies to evaluate the role of UGDH in therapeutic resistance to improve outcomes and survival for breast cancer patients.

3.
Oncotarget ; 14: 843-857, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37769033

RESUMO

UDP-glucose-6-dehydrogenase (UGDH) is a cytosolic, hexameric enzyme that converts UDP-glucose to UDP-glucuronic acid (UDP-GlcUA), a key reaction in hormone and xenobiotic metabolism and in the production of extracellular matrix precursors. In this review, we classify UGDH as a molecular indicator of tumor progression in multiple cancer types, describe its involvement in key canonical cancer signaling pathways, and identify methods to inhibit UGDH, its substrates, and its downstream products. As such, we position UGDH as an enzyme to be exploited as a potential prognostication marker in oncology and a therapeutic target in cancer biology.


Assuntos
Neoplasias , Uridina Difosfato Glucose Desidrogenase , Humanos , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/química , Uridina Difosfato Glucose , Neoplasias/genética , Oncologia , Glucose , Biologia , Glucose Desidrogenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA