RESUMO
Exome and genome sequencing have become the tools of choice for rare disease diagnosis, leading to large amounts of data available for analyses. To identify causal variants in these datasets, powerful filtering and decision support tools that can be efficiently used by clinicians and researchers are required. To address this need, we developed seqr - an open-source, web-based tool for family-based monogenic disease analysis that allows researchers to work collaboratively to search and annotate genomic callsets. To date, seqr is being used in several research pipelines and one clinical diagnostic lab. In our own experience through the Broad Institute Center for Mendelian Genomics, seqr has enabled analyses of over 10,000 families, supporting the diagnosis of more than 3,800 individuals with rare disease and discovery of over 300 novel disease genes. Here, we describe a framework for genomic analysis in rare disease that leverages seqr's capabilities for variant filtration, annotation, and causal variant identification, as well as support for research collaboration and data sharing. The seqr platform is available as open source software, allowing low-cost participation in rare disease research, and a community effort to support diagnosis and gene discovery in rare disease.
Assuntos
Genômica , Doenças Raras , Exoma , Humanos , Internet , Doenças Raras/diagnóstico , Doenças Raras/genética , SoftwareRESUMO
PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: On the basis of 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contained 15,241 gene-disease assertions on 4569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.
Assuntos
Bases de Dados Genéticas , Genômica , Testes Genéticos , Variação Genética , HumanosRESUMO
Structured representation of clinical genetic results is necessary for advancing precision medicine. The Electronic Medical Records and Genomics (eMERGE) Network's Phase III program initially used a commercially developed XML message format for standardized and structured representation of genetic results for electronic health record (EHR) integration. In a desire to move towards a standard representation, the network created a new standardized format based upon Health Level Seven Fast Healthcare Interoperability Resources (HL7® FHIR®), to represent clinical genomics results. These new standards improve the utility of HL7® FHIR® as an international healthcare interoperability standard for management of genetic data from patients. This work advances the establishment of standards that are being designed for broad adoption in the current health information technology landscape.
Assuntos
Registros Eletrônicos de Saúde , Informática Médica , Genômica , Nível Sete de Saúde , Humanos , Medicina de PrecisãoRESUMO
The Clinical Genome Resource (ClinGen)'s work to develop a knowledge base to support the understanding of genes and variants for use in precision medicine and research depends on robust, broadly applicable, and adaptable technical standards for sharing data and information. To forward this goal, ClinGen has joined with the Global Alliance for Genomics and Health (GA4GH) to support the development of open, freely-available technical standards and regulatory frameworks for secure and responsible sharing of genomic and health-related data. In its capacity as one of the 15 inaugural GA4GH "Driver Projects," ClinGen is providing input on the key standards needs of the global genomics community, and has committed to participate on GA4GH Work Streams to support the development of: (1) a standard model for computer-readable variant representation; (2) a data model for linking variant data to annotations; (3) a specification to enable sharing of genomic variant knowledge and associated clinical interpretations; and (4) a set of best practices for use of phenotype and disease ontologies. ClinGen's participation as a GA4GH Driver Project will provide a robust environment to test drive emerging genomic knowledge sharing standards and prove their utility among the community, while accelerating the construction of the ClinGen evidence base.
Assuntos
Genoma Humano/genética , Disseminação de Informação/métodos , Biologia Computacional , Bases de Dados Genéticas , Variação Genética , Genômica , Humanos , Medicina de PrecisãoRESUMO
Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.
Assuntos
Bases de Dados Genéticas , Humanos , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/classificação , Medicina de Precisão/métodos , Predisposição Genética para DoençaRESUMO
The Clinical Genome Resource (ClinGen) serves as an authoritative resource on the clinical relevance of genes and variants. In order to support our curation activities and to disseminate our findings to the community, we have developed a Data Platform of informatics resources backed by standardized data models. In this workshop we demonstrate our publicly available resources including curation interfaces, (Variant Curation Interface, CIViC), supporting infrastructure (Allele Registry, Genegraph), and data models (SEPIO, GA4GH VRS, VA).
Assuntos
Biologia Computacional , Variação Genética , Humanos , Bases de Dados Genéticas , Genoma Humano , GenômicaRESUMO
Introduction: Variant annotation is a critical component in next-generation sequencing, enabling a sequencing lab to comb through a sea of variants in order to hone in on those likely to be most significant, and providing clinicians with necessary context for decision-making. But with the rapid evolution of genomics knowledge, reported annotations can quickly become out-of-date. Under the ONC Sync for Genes program, our team sought to standardize the sharing of dynamically annotated variants (e.g., variants annotated on demand, based on current knowledge). The computable biomedical knowledge artifacts that were developed enable a clinical decision support (CDS) application to surface up-to-date annotations to clinicians. Methods: The work reported in this article relies on the Health Level 7 Fast Healthcare Interoperability Resources (FHIR) Genomics and Global Alliance for Genomics and Health (GA4GH) Variant Annotation (VA) standards. We developed a CDS pipeline that dynamically annotates patient's variants through an intersection with current knowledge and serves up the FHIR-encoded variants and annotations (diagnostic and therapeutic implications, molecular consequences, population allele frequencies) via FHIR Genomics Operations. ClinVar, CIViC, and PharmGKB were used as knowledge sources, encoded as per the GA4GH VA specification. Results: Primary public artifacts from this project include a GitHub repository with all source code, a Swagger interface that allows anyone to visualize and interact with the code using only a web browser, and a backend database where all (synthetic and anonymized) patient data and knowledge are housed. Conclusions: We found that variant annotation varies in complexity based on the variant type, and that various bioinformatics strategies can greatly improve automated annotation fidelity. More importantly, we demonstrated the feasibility of an ecosystem where genomic knowledge bases have standardized knowledge (e.g., based on the GA4GH VA spec), and CDS applications can dynamically leverage that knowledge to provide real-time decision support, based on current knowledge, to clinicians at the point of care.
RESUMO
As the diversity of genomic variation data increases with our growing understanding of the role of variation in health and disease, it is critical to develop standards for precise inter-system exchange of these data for research and clinical applications. The Global Alliance for Genomics and Health (GA4GH) Variation Representation Specification (VRS) meets this need through a technical terminology and information model for disambiguating and concisely representing variation concepts. Here we discuss the recent Genotype model in VRS, which may be used to represent the allelic composition of a genetic locus. We demonstrate the use of the Genotype model and the constituent Haplotype model for the precise and interoperable representation of pharmacogenomic diplotypes, HGVS variants, and VCF records using VRS and discuss how this can be leveraged to enable interoperable exchange and search operations between assayed variation and genomic knowledgebases.
Assuntos
Biologia Computacional , Variação Genética , Humanos , Bases de Dados Genéticas , Genômica , GenótipoRESUMO
Genetic tests often identify variants whose significance cannot be determined at the time they are reported. In many situations, it is critical that clinicians be informed when new information emerges on these variants. It is already extremely challenging for laboratories to provide these updates. These challenges will grow rapidly as an increasing number of clinical genetic tests are ordered and as the amount of patient DNA assayed per test expands; the challenges will need to be addressed before whole-genome sequencing is used on a widespread basis.Information technology infrastructure can be useful in this context. We have deployed an infrastructure enabling clinicians to receive knowledge updates when a laboratory changes the classification of a variant. We have gathered statistics from this deployment regarding the frequency of both variant classification changes and the effects of these classification changes on patients. We report on the system's functionality as well as the statistics derived from its use.Genet Med advance online publication 5 April 2012.
RESUMO
BACKGROUND: Identification of clinically significant genetic alterations involved in human disease has been dramatically accelerated by developments in next-generation sequencing technologies. However, the infrastructure and accessible comprehensive curation tools necessary for analyzing an individual patient genome and interpreting genetic variants to inform healthcare management have been lacking. RESULTS: Here we present the ClinGen Variant Curation Interface (VCI), a global open-source variant classification platform for supporting the application of evidence criteria and classification of variants based on the ACMG/AMP variant classification guidelines. The VCI is among a suite of tools developed by the NIH-funded Clinical Genome Resource (ClinGen) Consortium and supports an FDA-recognized human variant curation process. Essential to this is the ability to enable collaboration and peer review across ClinGen Expert Panels supporting users in comprehensively identifying, annotating, and sharing relevant evidence while making variant pathogenicity assertions. To facilitate evidence-based improvements in human variant classification, the VCI is publicly available to the genomics community. Navigation workflows support users providing guidance to comprehensively apply the ACMG/AMP evidence criteria and document provenance for asserting variant classifications. CONCLUSIONS: The VCI offers a central platform for clinical variant classification that fills a gap in the learning healthcare system, facilitates widespread adoption of standards for clinical curation, and is available at https://curation.clinicalgenome.org.
Assuntos
Variação Genética , Genoma Humano , Humanos , Testes Genéticos , GenômicaRESUMO
The future of personalized medicine will hinge on effective management of patient genetic profiles. Molecular diagnostic testing laboratories need to track knowledge surrounding an increasingly large number of genetic variants, incorporate this knowledge into interpretative reports, and keep ordering clinicians up to date as this knowledge evolves. Treating clinicians need to track which variants have been identified in each of their patients along with the significance of these variants. The GeneInsight(SM) Suite assists in these areas. The suite also provides a basis for interconnecting laboratories and clinicians in a manner that increases the scalability of personalized medicine processes.
Assuntos
Testes Genéticos/métodos , Técnicas de Diagnóstico Molecular/métodos , Software , Sistemas Inteligentes , Variação Genética , Humanos , Bases de Conhecimento , Medicina de Precisão/métodosRESUMO
Maximizing the personal, public, research, and clinical value of genomic information will require the reliable exchange of genetic variation data. We report here the Variation Representation Specification (VRS, pronounced "verse"), an extensible framework for the computable representation of variation that complements contemporary human-readable and flat file standards for genomic variation representation. VRS provides semantically precise representations of variation and leverages this design to enable federated identification of biomolecular variation with globally consistent and unique computed identifiers. The VRS framework includes a terminology and information model, machine-readable schema, data sharing conventions, and a reference implementation, each of which is intended to be broadly useful and freely available for community use. VRS was developed by a partnership among national information resource providers, public initiatives, and diagnostic testing laboratories under the auspices of the Global Alliance for Genomics and Health (GA4GH).
RESUMO
The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits.
RESUMO
The eMERGE Network is establishing methods for electronic transmittal of patient genetic test results from laboratories to healthcare providers across organizational boundaries. We surveyed the capabilities and needs of different network participants, established a common transfer format, and implemented transfer mechanisms based on this format. The interfaces we created are examples of the connectivity that must be instantiated before electronic genetic and genomic clinical decision support can be effectively built at the point of care. This work serves as a case example for both standards bodies and other organizations working to build the infrastructure required to provide better electronic clinical decision support for clinicians.
Assuntos
Registros Eletrônicos de Saúde , Testes Genéticos , Genômica/métodos , Disseminação de Informação/métodos , Redes de Comunicação de Computadores , Genoma Humano , Humanos , Análise de Sequência de DNA , Estados UnidosRESUMO
A national workgroup convened by the Centers for Disease Control and Prevention identified principles and made recommendations for standardizing the description of sequence data contained within the variant file generated during the course of clinical next-generation sequence analysis for diagnosing human heritable conditions. The specifications for variant files were initially developed to be flexible with regard to content representation to support a variety of research applications. This flexibility permits variation with regard to how sequence findings are described and this depends, in part, on the conventions used. For clinical laboratory testing, this poses a problem because these differences can compromise the capability to compare sequence findings among laboratories to confirm results and to query databases to identify clinically relevant variants. To provide for a more consistent representation of sequence findings described within variant files, the workgroup made several recommendations that considered alignment to a common reference sequence, variant caller settings, use of genomic coordinates, and gene and variant naming conventions. These recommendations were considered with regard to the existing variant file specifications presently used in the clinical setting. Adoption of these recommendations is anticipated to reduce the potential for ambiguity in describing sequence findings and facilitate the sharing of genomic data among clinical laboratories and other entities.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Bases de Dados Genéticas , Variação Genética/genética , Humanos , SoftwareRESUMO
Academic medical centers require many interconnected systems to fully support genetic testing processes. We provide an overview of the end-to-end support that has been established surrounding a genetic testing laboratory within our environment, including both laboratory and clinician facing infrastructure. We explain key functions that we have found useful in the supporting systems. We also consider ways that this infrastructure could be enhanced to enable deeper assessment of genetic test results in both the laboratory and clinic.
RESUMO
OBJECTIVES: To understand the impact of GeneInsight Clinic (GIC), a web-based tool designed to manage genetic information and facilitate communication of test results and variant updates from the laboratory to the clinics, we measured the use of GIC and the time it took for new genetic knowledge to be available to clinicians. METHODS: Usage data were collected across four study sites for the GIC launch and post-GIC implementation time periods. The primary outcome measures were the time (average number of days) between variant change approval and notification of clinic staff, and the time between notification and viewing the patient record. RESULTS: Post-GIC, time between a variant change approval and provider notification was shorter than at launch (average days at launch 503.8, compared to 4.1 days post-GIC). After e-mail alerts were sent at launch, providers clicked into the patient record associated with 91% of these alerts. In the post period, clinic providers clicked into the patient record associated with 95% of the alerts, on average 12 days after the e-mail was sent. DISCUSSION: We found that GIC greatly increased the likelihood that a provider would receive updated variant information as well as reduced the time associated with distributing that variant information, thus providing a more efficient process for incorporating new genetic knowledge into clinical care. CONCLUSIONS: Our study results demonstrate that health information technology systems have the potential effectively to assist providers in utilizing genetic information in patient care.