Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 34(10): 3790-3813, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35861422

RESUMO

Thymidylates are generated by several partially overlapping metabolic pathways in different subcellular locations. This interconnectedness complicates an understanding of how thymidylates are formed in vivo. Analyzing a comprehensive collection of mutants and double mutants on the phenotypic and metabolic level, we report the effect of de novo thymidylate synthesis, salvage of thymidine, and conversion of cytidylates to thymidylates on thymidylate homeostasis during seed germination and seedling establishment in Arabidopsis (Arabidopsis thaliana). During germination, the salvage of thymidine in organelles contributes predominantly to the thymidylate pools and a mutant lacking organellar (mitochondrial and plastidic) thymidine kinase has severely altered deoxyribonucleotide levels, less chloroplast DNA, and chlorotic cotyledons. This phenotype is aggravated when mitochondrial thymidylate de novo synthesis is additionally compromised. We also discovered an organellar deoxyuridine-triphosphate pyrophosphatase and show that its main function is not thymidylate synthesis but probably the removal of noncanonical nucleotide triphosphates. Interestingly, cytosolic thymidylate synthesis can only compensate defective organellar thymidine salvage in seedlings but not during germination. This study provides a comprehensive insight into the nucleotide metabolome of germinating seeds and demonstrates the unique role of enzymes that seem redundant at first glance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , DNA de Cloroplastos/metabolismo , Desoxirribonucleotídeos/metabolismo , Desoxiuridina/metabolismo , Germinação , Metaboloma , Nucleotídeos/metabolismo , Fosforilação , Pirofosfatases/metabolismo , Plântula , Sementes/genética , Sementes/metabolismo , Timidina/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo
2.
Plant Cell ; 31(3): 734-751, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787180

RESUMO

Plants can fully catabolize purine nucleotides. A firmly established central intermediate is the purine base xanthine. In the current widely accepted model of plant purine nucleotide catabolism, xanthine can be generated in various ways involving either inosine and hypoxanthine or guanosine and xanthosine as intermediates. In a comprehensive mutant analysis involving single and multiple mutants of urate oxidase, xanthine dehydrogenase, nucleoside hydrolases, guanosine deaminase, and hypoxanthine guanine phosphoribosyltransferase, we demonstrate that purine nucleotide catabolism in Arabidopsis (Arabidopsis thaliana) mainly generates xanthosine, but not inosine and hypoxanthine, and that xanthosine is derived from guanosine deamination and a second source, likely xanthosine monophosphate dephosphorylation. Nucleoside hydrolase 1 (NSH1) is known to be essential for xanthosine hydrolysis, but the in vivo function of a second cytosolic nucleoside hydrolase, NSH2, is unclear. We demonstrate that NSH1 activates NSH2 in vitro and in vivo, forming a complex with almost two orders of magnitude higher catalytic efficiency for xanthosine hydrolysis than observed for NSH1 alone. Remarkably, an inactive NSH1 point mutant can activate NSH2 in vivo, fully preventing purine nucleoside accumulation in nsh1 background. Our data lead to an altered model of purine nucleotide catabolism that includes an NSH heterocomplex as a central component.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Guanosina Monofosfato/metabolismo , Ribonucleosídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutação , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Nucleosídeo Desaminases/genética , Nucleosídeo Desaminases/metabolismo , Plantas Geneticamente Modificadas , Xantinas
3.
Methods Mol Biol ; 2790: 439-466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649586

RESUMO

Stable isotope labeling with 13CO2 coupled with mass spectrometry allows monitoring the incorporation of 13C into photosynthetic intermediates and is a powerful technique for the investigation of the metabolic dynamics of photosynthesis. We describe here a protocol for 13CO2 labeling of large leaved plants and of Arabidopsis thaliana rosette, and a method for quantitative mass spectrometry analyses to uncover the labeling pattern of Calvin-Benson cycle sucrose, and starch synthesis as well as carbon-concentrating mechanism metabolites.


Assuntos
Arabidopsis , Isótopos de Carbono , Marcação por Isótopo , Fotossíntese , Marcação por Isótopo/métodos , Arabidopsis/metabolismo , Isótopos de Carbono/metabolismo , Espectrometria de Massas/métodos , Sacarose/metabolismo , Dióxido de Carbono/metabolismo , Amido/metabolismo , Metabolômica/métodos , Folhas de Planta/metabolismo
4.
J Hazard Mater ; 269: 24-30, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24462199

RESUMO

The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te(IV)) and selenite (Se(IV)) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te(0) in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se(0) precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te(0) and Se(0)nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te(0) and Se(0) nature of the nanoparticles.


Assuntos
Calcogênios/química , Rhodobacter capsulatus/química , Anaerobiose , Ânions/química , Proteínas de Bactérias/química , Calcogênios/metabolismo , Microscopia Eletrônica de Transmissão , Nanopartículas , Naftoquinonas , Oxirredução , Fotossíntese , Rhodobacter capsulatus/metabolismo , Rhodobacter capsulatus/ultraestrutura , Compostos de Selênio/química , Telúrio/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA