Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
FASEB J ; 35(8): e21828, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34325494

RESUMO

Since prenatal glucocorticoids (GC) excess increases the risk of metabolic dysfunctions in the offspring and its effect on ß-cell recovery capacity remains unknown we investigated these aspects in offspring from mice treated with dexamethasone (DEX) in the late pregnancy. Half of the pups were treated with streptozotocin (STZ) on the sixth postnatal day (PN). Functional and molecular analyses were performed in male offspring on PN25 and PN225. Prenatal DEX treatment resulted in low birth weight. At PN25, both the STZ-treated offspring developed hyperglycemia and had lower ß-cell mass, in parallel with higher α-cell mass and glucose intolerance, with no impact of prenatal DEX on such parameters. At PN225, the ß-cell mass was partially recovered in the STZ-treated mice, but they remained glucose-intolerant, irrespective of being insulin sensitive. Prenatal exposition to DEX predisposed adult offspring to sustained hyperglycemia and perturbed islet function (lower insulin and higher glucagon response to glucose) in parallel with exacerbated glucose intolerance. ß-cell-specific knockdown of the Hnf4α in mice from the DS group resulted in exacerbated glucose intolerance. We conclude that high GC exposure during the prenatal period exacerbates the metabolic dysfunctions in adult life of mice exposed to STZ early in life, resulting in a lesser ability to recover the islets' function over time. This study alerts to the importance of proper management of exogenous GCs during pregnancy and a healthy postnatal lifestyle since the combination of adverse factors during the prenatal and postnatal period accentuates the predisposition to metabolic disorders in adult life.


Assuntos
Dexametasona/toxicidade , Glucocorticoides/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Dexametasona/administração & dosagem , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Teste de Tolerância a Glucose , Insulina/farmacologia , Camundongos , Neoplasias Experimentais , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Diabetologia ; 60(1): 116-125, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27796421

RESUMO

AIMS/HYPOTHESIS: Pancreatic beta cell dysfunction is a prerequisite for the development of type 2 diabetes. Histone deacetylases (HDACs) may affect pancreatic endocrine function and glucose homeostasis through alterations in gene regulation. Our aim was to investigate the role of HDAC7 in human and rat pancreatic islets and clonal INS-1 beta cells (INS-1 832/13). METHODS: To explore the role of HDAC7 in pancreatic islets and clonal beta cells, we used RNA sequencing, mitochondrial functional analyses, microarray techniques, and HDAC inhibitors MC1568 and trichostatin A. RESULTS: Using RNA sequencing, we found increased HDAC7 expression in human pancreatic islets from type 2 diabetic compared with non-diabetic donors. HDAC7 expression correlated negatively with insulin secretion in human islets. To mimic the situation in type 2 diabetic islets, we overexpressed Hdac7 in rat islets and clonal beta cells. In both, Hdac7 overexpression resulted in impaired glucose-stimulated insulin secretion. Furthermore, it reduced insulin content, mitochondrial respiration and cellular ATP levels in clonal beta cells. Overexpression of Hdac7 also led to changes in the genome-wide gene expression pattern, including increased expression of Tcf7l2 and decreased expression of gene sets regulating DNA replication and repair as well as nucleotide metabolism. In accordance, Hdac7 overexpression reduced the number of beta cells owing to enhanced apoptosis. Finally, we found that inhibiting HDAC7 activity with pharmacological inhibitors or small interfering RNA-mediated knockdown restored glucose-stimulated insulin secretion in beta cells that were overexpressing Hdac7. CONCLUSIONS/INTERPRETATION: Taken together, these results indicate that increased HDAC7 levels caused beta cell dysfunction and may thereby contribute to defects seen in type 2 diabetic islets. Our study supports HDAC7 inhibitors as a therapeutic option for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Histona Desacetilases/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Idoso , Feminino , Regulação da Expressão Gênica , Hemoglobinas Glicadas/metabolismo , Histona Desacetilases/genética , Humanos , Técnicas In Vitro , Secreção de Insulina , Masculino , Pessoa de Meia-Idade
3.
PLoS Genet ; 10(11): e1004735, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375650

RESUMO

Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development. However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of 468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis, corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets. Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified candidate genes (GPX7, GSTT1 and SNX19) directly affect key biological processes such as proliferation and apoptosis in pancreatic ß-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation interacts to influence gene expression, islet function and potential diabetes risk in humans.


Assuntos
Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Estudo de Associação Genômica Ampla , Insulina/genética , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Glutationa Peroxidase , Glutationa Transferase , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Peroxidases/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , Nexinas de Classificação/genética
4.
PLoS Genet ; 10(3): e1004160, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603685

RESUMO

Impaired insulin secretion is a hallmark of type 2 diabetes (T2D). Epigenetics may affect disease susceptibility. To describe the human methylome in pancreatic islets and determine the epigenetic basis of T2D, we analyzed DNA methylation of 479,927 CpG sites and the transcriptome in pancreatic islets from T2D and non-diabetic donors. We provide a detailed map of the global DNA methylation pattern in human islets, ß- and α-cells. Genomic regions close to the transcription start site showed low degrees of methylation and regions further away from the transcription start site such as the gene body, 3'UTR and intergenic regions showed a higher degree of methylation. While CpG islands were hypomethylated, the surrounding 2 kb shores showed an intermediate degree of methylation, whereas regions further away (shelves and open sea) were hypermethylated in human islets, ß- and α-cells. We identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and KCNQ1, with differential DNA methylation in T2D islets after correction for multiple testing. The majority of the differentially methylated CpG sites had an intermediate degree of methylation and were underrepresented in CpG islands (∼ 7%) and overrepresented in the open sea (∼ 60%). 102 of the differentially methylated genes, including CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2D islets. Methylation of CDKN1A and PDE7B promoters in vitro suppressed their transcriptional activity. Functional analyses demonstrated that identified candidate genes affect pancreatic ß- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal ß- and α-cells, respectively. Together, our data can serve as a reference methylome in human islets. We provide new target genes with altered DNA methylation and expression in human T2D islets that contribute to perturbed insulin and glucagon secretion. These results highlight the importance of epigenetics in the pathogenesis of T2D.


Assuntos
Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Insulina/genética , Ilhas de CpG/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Suscetibilidade a Doenças , Exocitose/genética , Genoma Humano , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Regiões Promotoras Genéticas
5.
BMC Med ; 12: 103, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24953961

RESUMO

BACKGROUND: Circulating free fatty acids are often elevated in patients with type 2 diabetes (T2D) and obese individuals. Chronic exposure to high levels of saturated fatty acids has detrimental effects on islet function and insulin secretion. Altered gene expression and epigenetics may contribute to T2D and obesity. However, there is limited information on whether fatty acids alter the genome-wide transcriptome profile in conjunction with DNA methylation patterns in human pancreatic islets. To dissect the molecular mechanisms linking lipotoxicity to impaired insulin secretion, we investigated the effects of a 48 h palmitate treatment in vitro on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. METHODS: Genome-wide mRNA expression was analyzed using Affymetrix GeneChip(®) Human Gene 1.0 ST whole transcript-based array (n = 13) and genome-wide DNA methylation was analyzed using Infinium HumanMethylation450K BeadChip (n = 13) in human pancreatic islets exposed to palmitate or control media for 48 h. A non-parametric paired Wilcoxon statistical test was used to analyze mRNA expression. Apoptosis was measured using Apo-ONE(®) Homogeneous Caspase-3/7 Assay (n = 4). RESULTS: While glucose-stimulated insulin secretion was decreased, there was no significant effect on apoptosis in human islets exposed to palmitate. We identified 1,860 differentially expressed genes in palmitate-treated human islets. These include candidate genes for T2D, such as TCF7L2, GLIS3, HNF1B and SLC30A8. Additionally, genes in glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid metabolism, glutathione metabolism and one carbon pool by folate were differentially expressed in palmitate-treated human islets. Palmitate treatment altered the global DNA methylation level and DNA methylation levels of CpG island shelves and shores, 5'UTR, 3'UTR and gene body regions in human islets. Moreover, 290 genes with differential expression had a corresponding change in DNA methylation, for example, TCF7L2 and GLIS3. Importantly, out of the genes differentially expressed due to palmitate treatment in human islets, 67 were also associated with BMI and 37 were differentially expressed in islets from T2D patients. CONCLUSION: Our study demonstrates that palmitate treatment of human pancreatic islets gives rise to epigenetic modifications that together with altered gene expression may contribute to impaired insulin secretion and T2D.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Palmitatos/farmacologia , RNA Mensageiro/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Ilhas de CpG , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Glucose/farmacologia , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Metabolismo dos Lipídeos , Obesidade/etiologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
6.
Nat Commun ; 14(1): 8040, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086799

RESUMO

Epigenetic dysregulation may influence disease progression. Here we explore whether epigenetic alterations in human pancreatic islets impact insulin secretion and type 2 diabetes (T2D). In islets, 5,584 DNA methylation sites exhibit alterations in T2D cases versus controls and are associated with HbA1c in individuals not diagnosed with T2D. T2D-associated methylation changes are found in enhancers and regions bound by ß-cell-specific transcription factors and associated with reduced expression of e.g. CABLES1, FOXP1, GABRA2, GLR1A, RHOT1, and TBC1D4. We find RHOT1 (MIRO1) to be a key regulator of insulin secretion in human islets. Rhot1-deficiency in ß-cells leads to reduced insulin secretion, ATP/ADP ratio, mitochondrial mass, Ca2+, and respiration. Regulators of mitochondrial dynamics and metabolites, including L-proline, glycine, GABA, and carnitines, are altered in Rhot1-deficient ß-cells. Islets from diabetic GK rats present Rhot1-deficiency. Finally, RHOT1methylation in blood is associated with future T2D. Together, individuals with T2D exhibit epigenetic alterations linked to mitochondrial dysfunction in pancreatic islets.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ratos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Insulina/metabolismo , Metilação de DNA , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Epigênese Genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição Forkhead/metabolismo
7.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36656641

RESUMO

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina/genética , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição PAX5/metabolismo
8.
Nat Rev Endocrinol ; 18(7): 433-448, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513492

RESUMO

Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Epigênese Genética/genética , Epigenômica , Humanos , Obesidade/complicações , Obesidade/genética , Medicina de Precisão
9.
Life Sci ; 307: 120854, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917939

RESUMO

AIMS: Synthetic glucocorticoids, including dexamethasone (DEX), are clinically prescribed due to their immunoregulatory properties. In excess they can perturb glucose homeostasis, with individuals predisposed to glucose intolerance more sensitive to these negative effects. While DEX is known to negatively impact ß-cell function, it is unclear how. Hence, our aim was to investigate the effect of DEX on ß-cell function, both alone and in combination with a diabetogenic milieu in the form of elevated glucose and palmitate. MAIN METHODS: Human pancreatic EndoC-ßH1 cells were cultured in the presence of high glucose and palmitate (glucolipotoxicity) and/or a pharmacological concentration of DEX, before functional and molecular analyses. KEY FINDINGS: Either treatment alone resulted in reduced insulin content and secretion, while the combination of DEX and glucolipotoxicity promoted a strong synergistic effect. These effects were associated with reduced insulin biosynthesis, likely due to downregulation of PDX1, MAFA, and the proinsulin converting enzymes, as well as reduced ATP response upon glucose stimulation. Genome-wide DNA methylation analysis found changes on PDE4D, MBNL1 and TMEM178B, all implicated in ß-cell function, after all three treatments. DEX alone caused very strong demethylation of the glucocorticoid-regulated gene ZBTB16, also known to influence the ß-cell, while the combined treatment caused altered methylation of many known ß-cell regulators and diabetes candidate genes. SIGNIFICANCE: DEX treatment and glucolipotoxic conditions separately alter the ß-cell epigenome and function. The combination of both treatments exacerbates these changes, showing that caution is needed when prescribing potent glucocorticoids in patients with dysregulated metabolism.


Assuntos
Glucocorticoides , Células Secretoras de Insulina , Trifosfato de Adenosina/metabolismo , Dexametasona/metabolismo , Dexametasona/toxicidade , Epigenoma , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Palmitatos/farmacologia , Proinsulina/metabolismo , Proinsulina/farmacologia
10.
Hum Mol Genet ; 18(20): 3942-54, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19628478

RESUMO

Huntington's disease is a severe progressive neurodegenerative disorder caused by a CAG expansion in the IT15 gene, which encodes huntingtin. The disease primarily affects the neostriatum and cerebral cortex and also associates with increased incidence of diabetes. Here, we show that mutant huntingtin disrupts intracellular transport and insulin secretion by direct interference with microtubular beta-tubulin. We demonstrate that mutant huntingtin impairs glucose-stimulated insulin secretion in insulin-producing beta-cells, without altering stored levels of insulin. Using VSVG-YFP, we show that mutant huntingtin retards post-Golgi transport. Moreover, we demonstrate that the speed of insulin vesicle trafficking is reduced. Using immunoprecipitation of mutant and wild-type huntingtin in combination with mass spectrometry, we reveal an enhanced and aberrant interaction between mutant huntingtin and beta-tubulin, implying the underlying mechanism of impaired intracellular transport. Thus, our findings have revealed a novel pathogenetic process by which mutant huntingtin may disrupt hormone exocytosis from beta-cells and possibly impair vesicular transport in any cell that expresses the pathogenic protein.


Assuntos
Doença de Huntington/metabolismo , Insulina/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Vesículas Transportadoras/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Ligação Proteica , Transporte Proteico , Ratos , Vesículas Transportadoras/genética , Tubulina (Proteína)/genética
11.
J Biol Chem ; 284(47): 32395-404, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19797055

RESUMO

The biochemical mechanisms underlying glucose-stimulated insulin secretion from pancreatic beta-cells are not completely understood. To identify metabolic disturbances in beta-cells that impair glucose-stimulated insulin secretion, we compared two INS-1-derived clonal beta-cell lines, which are glucose-responsive (832/13 cells) or glucose-unresponsive (832/2 cells). To this end, we analyzed a number of parameters in glycolytic and mitochondrial metabolism, including mRNA expression of genes involved in cellular energy metabolism. We found that despite a marked impairment of glucose-stimulated insulin secretion, 832/2 cells exhibited a higher rate of glycolysis. Still, no glucose-induced increases in respiratory rate, ATP production, or respiratory chain complex I, III, and IV activities were seen in the 832/2 cells. Instead, 832/2 cells, which expressed lactate dehydrogenase A, released lactate regardless of ambient glucose concentrations. In contrast, the glucose-responsive 832/13 line lacked lactate dehydrogenase and did not produce lactate. Accordingly, in 832/2 cells mRNA expression of genes for glycolytic enzymes were up-regulated, whereas mitochondria-related genes were down-regulated. This could account for a Warburg-like effect in the 832/2 cell clone, lacking in 832/13 cells as well as primary beta-cells. In human islets, mRNA expression of genes such as lactate dehydrogenase A and hexokinase I correlated positively with HbA(1c) levels, reflecting perturbed long term glucose homeostasis, whereas that of Slc2a2 (glucose transporter 2) correlated negatively with HbA(1c) and thus better metabolic control. We conclude that tight metabolic regulation enhancing mitochondrial metabolism and restricting glycolysis in 832/13 cells is required for clonal beta-cells to secrete insulin robustly in response to glucose. Moreover, a similar expression pattern of genes controlling glycolytic and mitochondrial metabolism in clonal beta-cells and human islets was observed, suggesting that a similar prioritization of mitochondrial metabolism is required in healthy human beta-cells. The 832 beta-cell lines may be helpful tools to resolve metabolic perturbations occurring in Type 2 diabetes.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Adulto , Idoso , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glicólise , Homeostase , Humanos , Secreção de Insulina , Lactatos/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos
12.
Acta Neuropathol Commun ; 8(1): 77, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493491

RESUMO

Prominent features of HD neuropathology are the intranuclear and cytoplasmic inclusions of huntingtin and striatal and cortical neuronal cell death. Recently, synaptic defects have been reported on HD-related studies, including impairment of neurotransmitter release and alterations of synaptic components. However, the definite characteristics of synapse dysfunction and the underlying mechanisms remain largely unknown. We studied the gene expression levels and patterns of a number of proteins forming the cytoskeletal matrix of the presynaptic active zones in HD transgenic mice (R6/1), in hippocampal neuronal cultures overexpressing mutant huntingtin and in postmortem brain tissues of HD patients. To investigate the interactions between huntingtin and active proteins, we performed confocal microscopic imaging and immunoprecipitation in mouse and HEK 293 cell line models. The mRNA and protein levels of Bassoon were reduced in mouse and cell culture models of HD and in brain tissues of patients with HD. Moreover, a striking re-distribution of a complex of proteins including Bassoon, Piccolo and Munc 13-1 from the cytoplasm and synapses into intranuclear huntingtin aggregates with loss of active zone proteins and dendritic spines. This re-localization was age-dependent and coincided with the formation of huntingtin aggregates. Using co-immunoprecipitation, we demonstrated that huntingtin interacts with Bassoon, and that this interaction is likely mediated by a third linking protein. Three structural proteins involved in neurotransmitter release in the presynaptic active zones of neurons are altered in expression and that the proteins are redistributed from their normal functional site into mutant huntingtin aggregates.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Espinhas Dendríticas/patologia , Expressão Gênica , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , RNA Mensageiro/metabolismo
13.
Sci Rep ; 10(1): 1744, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996742

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Sci Transl Med ; 12(561)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938793

RESUMO

Metformin is the first-line pharmacotherapy for managing type 2 diabetes (T2D). However, many patients with T2D do not respond to or tolerate metformin well. Currently, there are no phenotypes that successfully predict glycemic response to, or tolerance of, metformin. We explored whether blood-based epigenetic markers could discriminate metformin response and tolerance by analyzing genome-wide DNA methylation in drug-naïve patients with T2D at the time of their diagnosis. DNA methylation of 11 and 4 sites differed between glycemic responders/nonresponders and metformin-tolerant/intolerant patients, respectively, in discovery and replication cohorts. Greater methylation at these sites associated with a higher risk of not responding to or not tolerating metformin with odds ratios between 1.43 and 3.09 per 1-SD methylation increase. Methylation risk scores (MRSs) of the 11 identified sites differed between glycemic responders and nonresponders with areas under the curve (AUCs) of 0.80 to 0.98. MRSs of the 4 sites associated with future metformin intolerance generated AUCs of 0.85 to 0.93. Some of these blood-based methylation markers mirrored the epigenetic pattern in adipose tissue, a key tissue in diabetes pathogenesis, and genes to which these markers were annotated to had biological functions in hepatocytes that altered metformin-related phenotypes. Overall, we could discriminate between glycemic responders/nonresponders and participants tolerant/intolerant to metformin at diagnosis by measuring blood-based epigenetic markers in drug-naïve patients with T2D. This epigenetics-based tool may be further developed to help patients with T2D receive optimal therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Preparações Farmacêuticas , Glicemia , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico
15.
Sci Rep ; 9(1): 7785, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123324

RESUMO

Impaired insulin secretion from pancreatic islets is a hallmark of type 2 diabetes (T2D). Altered chromatin structure may contribute to the disease. We therefore studied the impact of T2D on open chromatin in human pancreatic islets. We used assay for transposase-accessible chromatin using sequencing (ATAC-seq) to profile open chromatin in islets from T2D and non-diabetic donors. We identified 57,105 and 53,284 ATAC-seq peaks representing open chromatin regions in islets of non-diabetic and diabetic donors, respectively. The majority of ATAC-seq peaks mapped near transcription start sites. Additionally, peaks were enriched in enhancer regions and in regions where islet-specific transcription factors (TFs), e.g. FOXA2, MAFB, NKX2.2, NKX6.1 and PDX1, bind. Islet ATAC-seq peaks overlap with 13 SNPs associated with T2D (e.g. rs7903146, rs2237897, rs757209, rs11708067 and rs878521 near TCF7L2, KCNQ1, HNF1B, ADCY5 and GCK, respectively) and with additional 67 SNPs in LD with known T2D SNPs (e.g. SNPs annotated to GIPR, KCNJ11, GLIS3, IGF2BP2, FTO and PPARG). There was enrichment of open chromatin regions near highly expressed genes in human islets. Moreover, 1,078 open chromatin peaks, annotated to 898 genes, differed in prevalence between diabetic and non-diabetic islet donors. Some of these peaks are annotated to candidate genes for T2D and islet dysfunction (e.g. HHEX, HMGA2, GLIS3, MTNR1B and PARK2) and some overlap with SNPs associated with T2D (e.g. rs3821943 near WFS1 and rs508419 near ANK1). Enhancer regions and motifs specific to key TFs including BACH2, FOXO1, FOXA2, NEUROD1, MAFA and PDX1 were enriched in differential islet ATAC-seq peaks of T2D versus non-diabetic donors. Our study provides new understanding into how T2D alters the chromatin landscape, and thereby accessibility for TFs and gene expression, in human pancreatic islets.


Assuntos
Cromatina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Idoso , Sequenciamento de Cromatina por Imunoprecipitação , Feminino , Expressão Gênica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares , Fatores de Transcrição
16.
Diabetes ; 68(10): 1965-1974, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31420409

RESUMO

Type 2 diabetes (T2D) is characterized by insufficient insulin secretion and elevated glucose levels, often in combination with high levels of circulating fatty acids. Long-term exposure to high levels of glucose or fatty acids impair insulin secretion in pancreatic islets, which could partly be due to epigenetic alterations. We studied the effects of high concentrations of glucose and palmitate combined for 48 h (glucolipotoxicity) on the transcriptome, the epigenome, and cell function in human islets. Glucolipotoxicity impaired insulin secretion, increased apoptosis, and significantly (false discovery rate <5%) altered the expression of 1,855 genes, including 35 genes previously implicated in T2D by genome-wide association studies (e.g., TCF7L2 and CDKN2B). Additionally, metabolic pathways were enriched for downregulated genes. Of the differentially expressed genes, 1,469 also exhibited altered DNA methylation (e.g., CDK1, FICD, TPX2, and TYMS). A luciferase assay showed that increased methylation of CDK1 directly reduces its transcription in pancreatic ß-cells, supporting the idea that DNA methylation underlies altered expression after glucolipotoxicity. Follow-up experiments in clonal ß-cells showed that knockdown of FICD and TPX2 alters insulin secretion. Together, our novel data demonstrate that glucolipotoxicity changes the epigenome in human islets, thereby altering gene expression and possibly exacerbating the secretory defect in T2D.


Assuntos
Epigênese Genética/efeitos dos fármacos , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ácido Palmítico/farmacologia , Apoptose/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo
17.
J Diabetes Res ; 2019: 5451038, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467927

RESUMO

AIMS: Posttranslational modifications of histones and transcription factors regulate gene expression and are implicated in beta-cell failure and diabetes. We have recently shown that preserving H3K27 and H3K4 methylation using the lysine demethylase inhibitor GSK-J4 reduces cytokine-induced destruction of beta-cells and improves beta-cell function. Here, we investigate the therapeutic potential of GSK-J4 to prevent diabetes development and examine the importance of H3K4 methylation for islet function. MATERIALS AND METHODS: We used two mouse models of diabetes to investigate the therapeutic potential of GSK-J4. To clarify the importance of H3K4 methylation, we characterized a mouse strain with knockout (KO) of the H3K4 demethylase KDM5B. RESULTS: GSK-J4 administration failed to prevent the development of experimental diabetes induced by multiple low-dose streptozotocin or adoptive transfer of splenocytes from acutely diabetic NOD to NODscid mice. KDM5B-KO mice were growth retarded with altered body composition, had low IGF-1 levels, and exhibited reduced insulin secretion. Interestingly, despite secreting less insulin, KDM5B-KO mice were able to maintain normoglycemia following oral glucose tolerance test, likely via improved insulin sensitivity, as suggested by insulin tolerance testing and phosphorylation of proteins belonging to the insulin signaling pathway. When challenged with high-fat diet, KDM5B-deficient mice displayed similar weight gain and insulin sensitivity as wild-type mice. CONCLUSION: Our results show a novel role of KDM5B in metabolism, as KDM5B-KO mice display growth retardation and improved insulin sensitivity.


Assuntos
Metabolismo dos Carboidratos/genética , Proteínas de Ligação a DNA/fisiologia , Glucose/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Homeostase/genética , Resistência à Insulina/genética , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Estreptozocina
18.
Mol Metab ; 14: 12-25, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29496428

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is a multifactorial, polygenic disease caused by impaired insulin secretion and insulin resistance. Genome-wide association studies (GWAS) were expected to resolve a large part of the genetic component of diabetes; yet, the single nucleotide polymorphisms identified by GWAS explain less than 20% of the estimated heritability for T2D. There was subsequently a need to look elsewhere to find disease-causing factors. Mechanisms mediating the interaction between environmental factors and the genome, such as epigenetics, may be of particular importance in the pathogenesis of T2D. SCOPE OF REVIEW: This review summarizes knowledge of the impact of epigenetics on the pathogenesis of T2D in humans. In particular, the review will focus on alterations in DNA methylation in four human tissues of importance for the disease; pancreatic islets, skeletal muscle, adipose tissue, and the liver. Case-control studies and studies examining the impact of non-genetic and genetic risk factors on DNA methylation in humans will be considered. These studies identified epigenetic changes in tissues from subjects with T2D versus non-diabetic controls. They also demonstrate that non-genetic factors associated with T2D such as age, obesity, energy rich diets, physical activity and the intrauterine environment impact the epigenome in humans. Additionally, interactions between genetics and epigenetics seem to influence the pathogenesis of T2D. CONCLUSIONS: Overall, previous studies by our group and others support a key role for epigenetics in the growing incidence of T2D.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Humanos , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo
19.
Acta Diabetol ; 55(12): 1231-1235, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30088095

RESUMO

AIMS: It has in recent years been established that epigenetic changes contribute to ß-cell dysfunction and type 2 diabetes (T2D). For example, we have showed that the expression of histone deacetylase 7 (HDAC7) is increased in pancreatic islets of individuals with T2D and that increased levels of Hdac7 in ß-cells impairs insulin secretion. The HDAC inhibitor MC1568 rescued this secretory impairment, suggesting that inhibitors specific for HDAC7 may be useful clinically in the treatment of T2D. The aim of the current study was to further explore HDAC7 as a novel therapeutic target in T2D. METHODS: Hdac7 was overexpressed in clonal ß-cells followed by the analysis of insulin secretion, mitochondrial function, as well as cell number and apoptosis in the presence or absence of MC1568. Furthermore, the effect of MC1568 on insulin secretion in human pancreatic islets from non-diabetic donors and donors with T2D was also studied. RESULTS: Overexpression of Hdac7 in clonal ß-cells significantly reduced insulin secretion, mitochondrial respiration, and ATP content, while it increased apoptosis. These impairments were all rescued by treatment with MC1568. The inhibitor also increased glucose-stimulated insulin secretion in islets from donors with T2D, while having no effect on islets from non-diabetic donors. CONCLUSIONS: HDAC7 inhibition protects ß-cells from mitochondrial dysfunction and apoptosis, and increases glucose-stimulated insulin secretion in islets from human T2D donors. Our study supports specific HDAC7 inhibitors as novel options in the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Pirróis/farmacologia , Adulto , Idoso , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética/efeitos dos fármacos , Feminino , Histona Desacetilases/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
Mol Cell Endocrinol ; 472: 57-67, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29183809

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is a complex disease characterised by chronic hyperglycaemia. The effects of elevated glucose on global gene expression in combination with DNA methylation patterns have not yet been studied in human pancreatic islets. Our aim was to study the impact of 48 h exposure to high (19 mM) versus control (5.6 mM) glucose levels on glucose-stimulated insulin secretion, gene expression and DNA methylation in human pancreatic islets. RESULTS: While islets kept at 5.6 mM glucose secreted significantly more insulin in response to short term glucose-stimulation (p = 0.0067), islets exposed to high glucose for 48 h were desensitised and unresponsive to short term glucose-stimulation with respect to insulin secretion (p = 0.32). Moreover, the exposure of human islets to 19 mM glucose resulted in significantly altered expression of eight genes (FDR<5%), with five of these (GLRA1, RASD1, VAC14, SLCO5A1, CHRNA5) also exhibiting changes in DNA methylation (p < 0.05). A gene set enrichment analysis of the expression data showed significant enrichment of e.g. TGF-beta signalling pathway, Notch signalling pathway and SNARE interactions in vesicular transport; these pathways are of relevance for islet function and possibly also diabetes. We also found increased DNA methylation of CpG sites annotated to PDX1 in human islets exposed to 19 mM glucose for 48 h. Finally, we could functionally validate a role for Glra1 in insulin secretion. CONCLUSION: Our data demonstrate that high glucose levels affect human pancreatic islet gene expression and several of these genes also exhibit epigenetic changes. This might contribute to the impaired insulin secretion seen in T2D.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/toxicidade , Ilhotas Pancreáticas/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/genética , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA