RESUMO
The synthesis and characterization of new series of phosphorus-containing dendrimers ended by non-symmetrical azamonophosphonates, or azadiphosphonates, or azadiphosphonic acid salts are reported. The sodium salts of the non-symmetrical azadiphosphonic dendrimers are soluble in water. Their influence towards human immune blood cells is assayed ex vivo.
Assuntos
Compostos Aza/química , Dendrímeros/síntese química , Dendrímeros/farmacologia , Monócitos/efeitos dos fármacos , Organofosfonatos/química , Células Cultivadas , Dendrímeros/química , Humanos , Monócitos/imunologiaRESUMO
A simple synthesis of polymer core-dendrimer shell nanoparticles (NPs) in the 15-20-nm-diameter range is presented. Amine-terminated polypropyleneimine (PPI) dendrimers DAB-dendri-(NH(2))(4) and DAB-dendri-(NH(2))(16) (DAB4 and DAB16) are covalently attached to the surface of primary polystyrene-based NPs bearing reactive chlorobenzyl groups produced by microemulsion polymerization in the presence of a cationic surfactant. The grafting readily proceeds under mild conditions and leads to translucent aqueous suspensions of core-shell-type NPs with a high density of peripheral amine groups that have been characterized relative to their size and chemical composition. The dendritic shell acts as a protective ionizable outer layer and provides an improvement of the colloidal stability in neutral and acidic media. The metal-binding capacity of the PPI dendrimers is retained, and spectrophotometric titrations show that the dendrimer-grafted NPs can trap a large number of Cu(2+) ions (more than 900 Cu per NP-DAB16). These properties make them potentially valuable templates for the elaboration of hybrid nanomaterials. The reactivity of the external amine groups is used to link covalently azobenzene chromophores (disperse Red 1 residues) through aza-Michael addition in aqueous suspension. This simple method gives access to colored NPs with high dye contents in the outer layer (up to 1000-1500 dye molecules per NP), which indicates that dendrimer-functionalized NPs are valuable building blocks for the construction of multifunctional nanomaterials.
Assuntos
Dendrímeros/química , Nanopartículas , Polipropilenos/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao InfravermelhoRESUMO
The syntheses of a series of phosphonic acid-capped dendrimers is described. This collection is based on a unique set of dendritic structural parameters-cyclo(triphosphazene) core, benzylhydrazone branches and phosphonic acid surface-and was designed to study the influence of phosphonate (phosphonic acid) surface loading towards the activation of human monocytes ex vivo. Starting from the versatile hexachloro-cyclo(triphosphazene) N(3)P(3)Cl(6), six first-generation dendrimers were obtained, bearing one to six full branches, that lead to 4, 8, 12, 16, 20 and 24 phosphonate termini, respectively. The surface loading was also explored at the limit of dense packing by means of a first-generation dendrimer having a cyclo(tetraphosphazene) core and bearing 32 termini, and with a first-generation dendrimer based on a AB(2)/CD(5) growing pattern and bearing 60 termini. Human monocyte activation by these dendrimers confirms the requirement of the whole dendritic structure for bioactivity and identifies the dendrimer bearing four branches, thus 16 phosphonate termini, as the most bioactive.