Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420790

RESUMO

Molecularly imprinted polymers (MIPs) are synthetic polymers with specific binding sites that present high affinity and spatial and chemical complementarities to a targeted analyte. They mimic the molecular recognition seen naturally in the antibody/antigen complementarity. Because of their specificity, MIPs can be included in sensors as a recognition element coupled to a transducer part that converts the interaction of MIP/analyte into a quantifiable signal. Such sensors have important applications in the biomedical field in diagnosis and drug discovery, and are a necessary complement of tissue engineering for analyzing the functionalities of the engineered tissues. Therefore, in this review, we provide an overview of MIP sensors that have been used for the detection of skeletal- and cardiac-muscle-related analytes. We organized this review by targeted analytes in alphabetical order. Thus, after an introduction to the fabrication of MIPs, we highlight different types of MIP sensors with an emphasis on recent works and show their great diversity, their fabrication, their linear range for a given analyte, their limit of detection (LOD), specificity, and reproducibility. We conclude the review with future developments and perspectives.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Reprodutibilidade dos Testes , Polímeros/química , Músculos
2.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628238

RESUMO

Digital-light-processing (DLP) three-dimensional (3D) bioprinting, which has a rapid printing speed and high precision, requires optimized biomaterial ink to ensure photocrosslinking for successful printing. However, optimization studies on DLP bioprinting have yet to sufficiently explore the measurement of light exposure energy and biomaterial ink absorbance controls to improve the printability. In this study, we synchronized the light wavelength of the projection base printer with the absorption wavelength of the biomaterial ink. In this paper, we provide a stepwise explanation of the challenges associated with unsynchronized absorption wavelengths and provide appropriate examples. In addition to biomaterial ink wavelength synchronization, we introduce photorheological measurements, which can provide optimized light exposure conditions. The photorheological measurements provide precise numerical data on light exposure time and, therefore, are an effective alternative to the expendable and inaccurate conventional measurement methods for light exposure energy. Using both photorheological measurements and bioink wavelength synchronization, we identified essential printability optimization conditions for DLP bioprinting that can be applied to various fields of biological sciences.


Assuntos
Bioimpressão , Materiais Biocompatíveis , Bioimpressão/métodos , Impressão Tridimensional
3.
Adv Funct Mater ; 31(42)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34924912

RESUMO

Bioengineering of tissues and organs has the potential to generate functional replacement organs. However, achieving the full-thickness vascularization that is required for long-term survival of living implants has remained a grand challenge, especially for clinically sized implants. During the pre-vascular phase, implanted engineered tissues are forced to metabolically rely on the diffusion of nutrients from adjacent host-tissue, which for larger living implants results in anoxia, cell death, and ultimately implant failure. Here it is reported that this challenge can be addressed by engineering self-oxygenating tissues, which is achieved via the incorporation of hydrophobic oxygen-generating micromaterials into engineered tissues. Self-oxygenation of tissues transforms anoxic stresses into hypoxic stimulation in a homogenous and tissue size-independent manner. The in situ elevation of oxygen tension enables the sustained production of high quantities of angiogenic factors by implanted cells, which are offered a metabolically protected pro-angiogenic microenvironment. Numerical simulations predict that self-oxygenation of living tissues will effectively orchestrate rapid full-thickness vascularization of implanted tissues, which is empirically confirmed via in vivo experimentation. Self-oxygenation of tissues thus represents a novel, effective, and widely applicable strategy to enable the vascularization living implants, which is expected to advance organ transplantation and regenerative medicine applications.

4.
Biosci Biotechnol Biochem ; 83(5): 942-951, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30732553

RESUMO

Bioavailability and bone loss inhibitory effects of vitamin D2 derived from UV-irradiated shiitake mushroom were determined in vivo. The effect of the absence of ovaries on the bioavailability of vitamin D2 and bone structure was also investigated. Sham operated (sham) and ovariectomized (OVX) rats were divided in 3 groups according to their diets, i.e. control: only vitamin D-deficient diets; UV(X): vitamin D-deficient diets with non-irradiated mushroom powder; UV(O): vitamin D-deficient diets with irradiated mushroom powder. The obtained results showed that vitamin D2 from shiitake mushroom was able to increase bone mineral density and trabecular bone structure of femur bone as well as its bioavailability. The absence of estrogen induced adverse effects not only on bioavailability of vitamin D2 but also on trabecular bone. In conclusion, vitamin D2-fortified shiitake mushroom might help postmenopausal women increase vitamin D2 bioavailability and retard trabecular bone loss. Abbreviations: OVX: ovariectomized; 25(OH)D: 25-hydroxyvitamin D; 1,25(OH)2D: 1,25-dihydroxyvitamin D; BMD: bone mineral density; micro-CT: micro computed tomography; RSM: response surface methodology; RP-HPLC: Reverse phase-high performance liquid chromatography; MS/MS: tandem mass spectrometry; E2: estradiol; NTx: N-terminal telopeptide of type I collagen; BV/TV: bone volume/total volume; BS/BV: bone surface/bone volume; Tb.Th: trabecular thickness; Tb.Sp: trabecular separation.


Assuntos
Disponibilidade Biológica , Osso e Ossos/anatomia & histologia , Ergocalciferóis/análise , Cogumelos Shiitake/química , Animais , Peso Corporal/efeitos dos fármacos , Densidade Óssea , Ergocalciferóis/administração & dosagem , Ergocalciferóis/farmacologia , Feminino , Fêmur/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Ovariectomia , Pós-Menopausa , Ratos Sprague-Dawley , Ratos Wistar , Vitamina D/análogos & derivados , Vitamina D/sangue , Microtomografia por Raio-X
5.
Mar Drugs ; 17(4)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027308

RESUMO

The gelatin extracted from mammals of porcine and bovine has been prominently used in pharmaceutical, medical, and cosmetic products. However, there have been some concerns for their usage due to religious, social and cultural objections, and animal-to-human infectious disease. Recently, gelatin from marine by-products has received growing attention as an alternative to mammalian gelatin. In this study, we demonstrate the formation of nanogels (NGs) using fish gelatin methacryloyl (GelMA) and their application possibility to the drug delivery system. The fabrication of fish GelMA NGs is carried out by crosslinking through the photopolymerization of the methacryloyl substituent present in the nanoemulsion droplets, followed by purification and redispersion. There were different characteristics depending on the aqueous phase in the emulsion and the type of solvent used in redispersion. The PBS-NGs/D.W., which was prepared using PBS for the aqueous phase and D.W. for the final dispersion solution, had a desirable particle size (<200 nm), low PdI (0.16), and high drug loading efficiency (77%). Spherical NGs particles were observed without aggregation in TEM images. In vitro release tests of doxorubicin (DOX)-GelMA NGs showed the pH-dependent release behavior of DOX. Also, the MTT experiments demonstrated that DOX-GelMA NGs effectively inhibited cell growth, while only GelMA NGs exhibit higher percentages of cell viability. Therefore, the results suggest that fish GelMA NGs have a potential for nano-carrier as fine individual particles without the aggregation and cytotoxicity to deliver small-molecule drugs.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Gelatina/química , Nanopartículas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Peixes , Gelatina/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Células NIH 3T3 , Nanopartículas/administração & dosagem
6.
Mar Drugs ; 16(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518062

RESUMO

Biologically active materials from marine sources have been receiving increasing attention as they are free from the transmissible diseases and religious restrictions associated with the use of mammalian resources. Among various other biomaterials from marine sources, alginate and fish gelatin (f-gelatin), with their inherent bioactivity and physicochemical tunability, have been studied extensively and applied in various biomedical fields such as regenerative medicine, tissue engineering, and pharmaceutical products. In this study, by using alginate and f-gelatin's chemical derivatives, we developed a marine-based interpenetrating polymer network (IPN) hydrogel consisting of alginate and f-gelatin methacryloyl (f-GelMA) networks via physical and chemical crosslinking methods, respectively. We then evaluated their physical properties (mechanical strength, swelling degree, and degradation rate) and cell behavior in hydrogels. Our results showed that the alginate/f-GelMA hydrogel displayed unique physical properties compared to when alginate and f-GelMA were used separately. These properties included high mechanical strength, low swelling and degradation rate, and an increase in cell adhesive ability. Moreover, for the first time, we introduced and optimized the application of alginate/f-GelMA hydrogel in a three-dimensional (3D) bioprinting system with high cell viability, which breaks the restriction of their utilization in tissue engineering applications and suggests that alginate/f-GelMA can be utilized as a novel bioink to broaden the uses of marine products in biomedical fields.


Assuntos
Produtos Biológicos/química , Bioimpressão/métodos , Hidrogéis/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Alginatos/química , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Proteínas de Peixes/química , Gelatina/química , Metacrilatos/química , Estresse Mecânico , Alicerces Teciduais/química
7.
Int J Mol Sci ; 19(2)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29470444

RESUMO

Abstract: Citrons have been widely used for medicinal purposes for a long time, but the application of citron in the food industry is still restricted. The extensive advantages of nanotechnology in the food industry have greatly broadened the application of foods. In this study, by employing nanotechnology, we prepared citron-extract nanoparticle with an average size of 174.11 ± 3.89 nm, containing protein peptide and/or liposome. In order to evaluate the toxicity of nanoparticles and to ensure food safety, biological cytotoxicity at the cell and genomic levels was also identified to examine the toxicity of citron extracts by using an in vitro system. Our results demonstrated that the cytotoxicity of citronliposome was dependent on cell type in high concentrations (1 and 5 mg/mL), selectively against primary human cardiac progenitor cells (hCPCs), and human endothelial progenitor cells (hEPCs) in MTT and lactate dehydrogenase (LDH) assays. Interestingly, for the NIH-3T3 and H9C2 cell lines, cell cytotoxicity was observed with slight genotoxicity, especially from citronpeptide extract for both cell lines. Taken together, our study provides cytotoxicity data on nanoengineered citron extracts according to different cell type as is crucial for further applications.


Assuntos
Citrus/química , Lipossomos/química , Peptídeos/farmacologia , Extratos Vegetais/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Humanos , L-Lactato Desidrogenase/metabolismo , Camundongos , Mutagênicos/toxicidade , Nanopartículas
8.
Int J Mol Sci ; 19(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342111

RESUMO

To overcome the drawbacks of conventional drug delivery system, nanoemulsion have been developed as an advanced form for improving the delivery of active ingredients. However, safety evaluation is crucial during the development stage before the commercialization. Therefore, the aim of this study was to evaluate the cytotoxicity of two types of newly developed nanoemulsions. Turmeric extract-loaded nanoemulsion powder-10.6 (TE-NEP-10.6, high content of artificial surfactant Tween 80), which forms the optimal nanoemulsion, and the TE-NEP-8.6 made by increasing the content of natural emulsifier (lecithin) to reduce the potential toxicity of nanoemulsion were cultured with various cells (NIH3T3, H9C2, HepG2, hCPC, and hEPC) and the changes of each cell were observed followed by nanoemulsion treatment. As a result, the two nanoemulsions (TE-NEP-10.6 and TE-NEP-8.6) did not show significant difference in cell viability. In the case of cell line (NIH3T3, H9C2, and HepG2), toxicity was not observed at an experimental concentration of less than 1 mg/mL, however, the cell survival rate decreased in a concentration dependent manner in the case of primary cultured cells. These results from our study can be used as a basic data to confirm the cell type dependent toxicity of nanoemulsion.


Assuntos
Curcuma/química , Emulsões/química , Nanopartículas/química , Óleos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Água/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Humanos
9.
Int J Mol Sci ; 18(11)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112123

RESUMO

Expansion of chondrocytes for repair of articular cartilage can lead to dedifferentiation, making it difficult to obtain a sufficient quantity of chondrocytes. Although previous studies have suggested that culture in a three-dimensional environment induces redifferentiation of dedifferentiated chondrocytes, its underlying mechanisms are still poorly understood in terms of metabolism compared with a two-dimensional environment. In this study, we demonstrate that attenuation of transglutaminase 2 (TG2), a multifunctional enzyme, stimulates redifferentiation of dedifferentiated chondrocytes. Fibroblast-like morphological changes increased as TG2 expression increased in passage-dependent manner. When dedifferentiated chondrocytes were cultured in a pellet culture system, TG2 expression was reduced and glycolytic enzyme expression up-regulated. Previous studies demonstrated that TG2 influences energy metabolism, and impaired glycolytic metabolism causes chondrocyte dedifferentiation. Interestingly, TG2 knockdown improved chondrogenic gene expression, glycolytic enzyme expression, and lactate production in a monolayer culture system. Taken together, down-regulation of TG2 is involved in redifferentiaton of dedifferentiated chondrocytes through enhancing glucose metabolism.


Assuntos
Diferenciação Celular/fisiologia , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Glucose/metabolismo , Transglutaminases/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Condrogênese/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Proteínas de Ligação ao GTP/genética , Humanos , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/genética
10.
Biotechnol Bioeng ; 113(7): 1403-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26666585

RESUMO

In the developing heart, a specific subset of endocardium undergoes an endothelial-to-mesenchymal transformation (EndMT) thus forming nascent valve leaflets. Extracellular matrix (ECM) proteins and growth factors (GFs) play important roles in regulating EndMT but the combinatorial effect of GFs with ECM proteins is less well understood. Here we use microscale engineering techniques to create single, binary, and tertiary component microenvironments to investigate the combinatorial effects of ECM proteins and GFs on the attachment and transformation of adult ovine mitral valve endothelial cells to a mesenchymal phenotype. With the combinatorial microenvironment microarrays, we utilized 60 different combinations of ECM proteins (Fibronectin, Collagen I, II, IV, Laminin) and GFs (TGF-ß1, bFGF, VEGF) and were able to identify new microenvironmental conditions capable of modulating EndMT in MVECs. Experimental results indicated that TGF-ß1 significantly upregulated the EndMT while either bFGF or VEGF downregulated EndMT process markedly. Also, ECM proteins could influence both the attachment of MVECs and the response of MVECs to GFs. In terms of attachment, fibronectin is significantly better for the adhesion of MVECs among the five tested proteins. Overall collagen IV and fibronectin appeared to play important roles in promoting EndMT process. Great consistency between macroscale and microarrayed experiments and present studies demonstrates that high-throughput cellular microarrays are a promising approach to study the regulation of EndMT in valvular endothelium. Biotechnol. Bioeng. 2016;113: 1403-1412. © 2015 Wiley Periodicals, Inc.


Assuntos
Transdiferenciação Celular/fisiologia , Células Endoteliais , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Mesenquimais , Análise Serial de Tecidos/métodos , Animais , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Valvas Cardíacas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/análise , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Suínos
11.
Adv Funct Mater ; 25(28): 4486-4495, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27134620

RESUMO

Muscle-based biohybrid actuators have generated significant interest as the future of biorobotics but so far they move without having much control over their actuation behavior. Integration of microelectrodes into the backbone of these systems may enable guidance during their motion and allow precise control over these actuators with specific activation patterns. Here, we addressed this challenge by developing aligned CNT forest microelectrode arrays and incorporated them into scaffolds for stimulating the cells. Aligned CNTs were successfully embedded into flexible and biocompatible hydrogel exhibiting excellent anisotropic electrical conductivity. Bioactuators were then engineered by culturing cardiomyocytes on the CNT microelectrode-integrated hydrogel constructs. The resulting cardiac tissue showed homogeneous cell organization with improved cell-to-cell coupling and maturation, which was directly related to the contractile force of muscle tissue. This centimeter-scale bioactuator has excellent mechanical integrity, embedded microelectrodes and is capable of spontaneous actuation behavior. Furthermore, we demonstrated that a biohybrid machine can be controlled by an external electrical field provided by the integrated CNT microelectrode arrays. In addition, due to the anisotropic electrical conductivity of the electrodes provided from aligned CNTs, significantly different excitation thresholds were observed in different configurations such as the ones in parallel vs. perpendicular direction to the CNT alignment.

12.
Bioconjug Chem ; 26(10): 1984-2001, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26280942

RESUMO

Hydrogels are hydrophilic polymer networks with high water content, which have played an important role as scaffolds for cells, as carriers for various biomolecules (e.g., drugs, genes, and soluble factors), and as injectable biomaterials in tissue engineering (TE) and regenerative medicine. Bioconjugation is an approach for improving the performance of hydrogels using cell-responsive components, such as proteins and peptides, which have high affinity to regulate cellular behaviors and tissue morphogenesis. However, the current knowledge on the role of those bioconjugated moieties in controlling cellular functions and tissue morphogenesis and bioconjugation methods are limited in the context of TE and organogenesis. Moreover, micro- and nanofabrication techniques have been used to manipulate bioconjugated hydrogels for regulating cell behaviors and function. This Review therefore describes synthesis, characteristics, and manipulation of various bioconjugated hydrogels and their potential in TE applications with special emphasis on preclinical/clinical translation.


Assuntos
Bioquímica/métodos , Hidrogéis , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis , Ensaios Clínicos como Assunto , Humanos , Hidrogéis/química , Microfluídica/métodos , Peptídeos/química , Alicerces Teciduais/química
13.
FASEB J ; 27(7): 2788-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23568779

RESUMO

Bone marrow-derived human mesenchymal stem cells (hMSCs) either promote or inhibit cancer progression, depending on factors that heretofore have been undefined. Here we have utilized extreme hypoxia (0.5% O2) and concurrent treatment with metal carcinogen (nickel) to evaluate the passage-dependent response of hMSCs toward cancerous transformation. Effects of hypoxia and nickel treatment on hMSC proliferation, apoptosis, gene and protein expression, replicative senescence, reactive oxygen species (ROS), redox mechanisms, and in vivo tumor growth were analyzed. The behavior of late passage hMSCs in a carcinogenic hypoxia environment follows a profile similar to that of transformed cancer cells (i.e., increased expression of oncogenic proteins, decreased expression of tumor suppressor protein, increased proliferation, decreased apoptosis, and aberrant redox mechanisms), but this effect was not observed in earlier passage control cells. These events resulted in accumulated intracellular ROS in vitro and excessive proliferation in vivo. We suggest a mechanism by which carcinogenic hypoxia modulates the activity of three critical transcription factors (c-MYC, p53, and HIF1), resulting in accumulated ROS and causing hMSCs to undergo cancer-like behavioral changes. This is the first study to utilize carcinogenic hypoxia as an environmentally relevant experimental model for studying the age-dependent cancerous transformation of hMSCs.


Assuntos
Transformação Celular Neoplásica , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Níquel/farmacologia , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Camundongos Nus , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo , Carga Tumoral/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
J Nanosci Nanotechnol ; 14(1): 487-500, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24730277

RESUMO

Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.


Assuntos
Órgãos Bioartificiais , Materiais Biocompatíveis/síntese química , Vasos Sanguíneos/crescimento & desenvolvimento , Nanopartículas/química , Nanotecnologia/instrumentação , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Vasos Sanguíneos/citologia , Desenho de Equipamento , Análise de Falha de Equipamento , Nanopartículas/ultraestrutura
15.
Nano Lett ; 13(7): 3185-92, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758622

RESUMO

Controlling the cellular microenvironment can be used to direct the cellular organization, thereby improving the function of synthetic tissues in biosensing, biorobotics, and regenerative medicine. In this study, we were inspired by the microstructure and biological properties of the extracellular matrix to develop freestanding ultrathin polymeric films (referred as "nanomembranes") that were flexible, cell adhesive, and had a morphologically tailorable surface. The resulting nanomembranes were exploited as flexible substrates on which cell-adhesive micropatterns were generated to align C2C12 skeletal myoblasts and embedded fibril carbon nanotubes enhanced the cellular elongation and differentiation. Functional nanomembranes with tunable morphology and mechanical properties hold great promise in studying cell-substrate interactions and in fabricating biomimetic constructs toward flexible biodevices.


Assuntos
Microambiente Celular/fisiologia , Membranas Artificiais , Mioblastos/citologia , Mioblastos/fisiologia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Engenharia Tecidual/métodos , Animais , Agregação Celular/fisiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Separação Celular , Camundongos , Micromanipulação/métodos , Propriedades de Superfície
16.
NPJ Sci Food ; 8(1): 13, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374073

RESUMO

Numerous studies have explored the cultivation of muscle cells using non-animal materials for cultivated meat production. Achieving muscle cell proliferation and alignment using 3D scaffolds made from plant-based materials remains challenging. This study introduces a technique to culture and align muscle cells using only plant-based materials, avoiding toxic chemical modifications. Zein-alginate fibers (ZA fibers) were fabricated by coating zein protein onto alginate fibers (A fibers). Zein's excellent cell compatibility and biodegradability enable high cell adhesion and proliferation rates, and the good ductility of the ZA fibers enable a high strain rate (>75%). We demonstrate mature and aligned myotube formation in ZA fibers, providing a simple way to align muscle cells using plant-based materials. Additionally, cultivated meat was constructed by assembling muscle, fat, and vessel fibers. This method holds promise for the future mass production of cultivated meat.

17.
Int J Biol Macromol ; 261(Pt 2): 129638, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266841

RESUMO

Microneedles are a promising micro-scale drug delivery platform that has been under development for over two decades. While 3D printing technology has been applied to fabricate these systems, the challenge of achieving needle sharpness remains. In this study, we present an innovative approach for microneedle fabrication using digital light processing (DLP) 3D printing and smart chitosan biomaterial. For the first time, we used hydroxybutyl methacrylated chitosan (HBCMA), which possesses dual temperature- and photo-sensitive properties, to create microneedles. The DLP approach enabled a quick generation of HBCMA-based microneedles with a high resolution. The microneedles exhibited 4D properties with a change in needle dimensions upon exposure to temperature, which enhances resolution, sharpens needles, and improves mechanical strength. We demonstrated the ability of these microneedles to load, deliver, sustained release small molecular drugs and penetrate soft tissue. Overall, the HBCMA-based microneedles show promising potential in non-dermal drug delivery applications.


Assuntos
Quitosana , Administração Cutânea , Microinjeções/métodos , Sistemas de Liberação de Medicamentos/métodos , Preparações de Ação Retardada
18.
Biomed Microdevices ; 15(3): 465-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23355068

RESUMO

Chitosan has been used as a scaffolding material in tissue engineering due to its mechanical properties and biocompatibility. With increased appreciation of the effect of micro- and nanoscale environments on cellular behavior, there is increased emphasis on generating microfabricated chitosan structures. Here we employed a microfluidic coaxial flow-focusing system to generate cell adhesive chitosan microtubes of controlled sizes by modifying the flow rates of a chitosan pre-polymer solution and phosphate buffered saline (PBS). The microtubes were extruded from a glass capillary with a 300 µm inner diameter. After ionic crosslinking with sodium tripolyphosphate (TPP), fabricated microtubes had inner and outer diameter ranges of 70-150 µm and 120-185 µm. Computational simulation validated the controlled size of microtubes and cell attachment. To enhance cell adhesiveness on the microtubes, we mixed gelatin with the chitosan pre-polymer solution. During the fabrication of microtubes, fibroblasts suspended in core PBS flow adhered to the inner surface of chitosan-gelatin microtubes. To achieve physiological pH values, we adjusted pH values of chiotsan pre-polymer solution and TPP. In particular, we were able to improve cell viability to 92 % with pH values of 5.8 and 7.4 for chitosan and TPP solution respectively. Cell culturing for three days showed that the addition of the gelatin enhanced cell spreading and proliferation inside the chitosan-gelatin microtubes. The microfluidic fabrication method for ionically crosslinked chitosan microtubes at physiological pH can be compatible with a variety of cells and used as a versatile platform for microengineered tissue engineering.


Assuntos
Quitosana/química , Quitosana/farmacologia , Técnicas Analíticas Microfluídicas/métodos , Animais , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Gelatina/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Fenômenos Mecânicos , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Células NIH 3T3 , Polifosfatos/química
19.
Biomacromolecules ; 14(5): 1299-310, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23394067

RESUMO

Hyperbranched polyesters (HPE) have a high efficiency to encapsulate bioactive agents, including drugs, genes, and proteins, due to their globe-like nanostructure. However, the use of these highly branched polymeric systems for tissue engineering applications has not been broadly investigated. Here, we report synthesis and characterization of photocrosslinkable HPE hydrogels with sustained drug release characteristics for cellular therapies. These HPE can encapsulate hydrophobic drug molecules within the HPE cavities due to the presence of a hydrophobic inner structure that is otherwise difficult to achieve in conventional hydrogels. The functionalization of HPE with photocrosslinkable acrylate moieties renders the formation of hydrogels with a highly porous interconnected structure and mechanically tough network. The compressive modulus of HPE hydrogels was tunable by changing the crosslinking density. The feasibility of using these HPE networks for cellular therapies was investigated by evaluating cell adhesion, spreading, and proliferation on hydrogel surface. Highly crosslinked and mechanically stiff HPE hydrogels have higher cell adhesion, spreading, and proliferation compared to soft and complaint HPE hydrogels. Overall, we showed that hydrogels made from HPE could be used for biomedical applications that require spatial control of cell adhesion and controlled release of hydrophobic clues.


Assuntos
Preparações de Ação Retardada/síntese química , Hidrogéis/síntese química , Poliésteres/síntese química , Alicerces Teciduais , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Dexametasona/análogos & derivados , Dexametasona/química , Dexametasona/farmacologia , Composição de Medicamentos , Hidrogéis/farmacologia , Hidrogéis/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas , Luz , Camundongos , Células NIH 3T3 , Processos Fotoquímicos , Poliésteres/farmacologia , Porosidade , Engenharia Tecidual
20.
Carbohydr Polym ; 321: 121287, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739499

RESUMO

Slaughtering animals for meat pose several challenges, including environmental pollution and ethical concerns. Scaffold-based cell-cultivated meat has been proposed as a solution to these problems, however, the utilization of animal-derived materials for scaffolding or the high cost of production remains a significant challenge. Alginate is an ideal material for cell-cultivated meat scaffolds but has poor cell adhesion properties. To address this issue, we achieved 82 % cell adhesion coverage by controlling the specific structure generated during the ionic crosslinking process of alginate. Post 11 days of culture; we evaluated cell adhesion, differentiation, and aligned cell networks. The cell growth increased by 12.7 % compared to the initial seeding concentration. Finally, we created hybrid cell-cultivated meat by combining single-cell protein from mycelium and cell-cultivated meat. This is non-animal based, edible, cost-effective, and has a desirable texture by blending cell-cultivated meat with a meat analogue. In summary, the creation of improved alginate fibers can effectively tackle various obstacles encountered in the manufacturing of cell-cultivated meat. This includes enhancing cell adhesion, reducing costs, and streamlining the production procedure.


Assuntos
Alginatos , Carne , Animais , Adesão Celular , Ciclo Celular , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA