Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(25): 10219-10227, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38864836

RESUMO

Targeted mass spectrometry (MS) approaches, which are powerful methods for uniquely and confidently quantifying a specific panel of proteins in complex biological samples, play a crucial role in validating and clinically translating protein biomarkers discovered through global proteomic profiling. Common targeted MS methods, such as multiple reaction monitoring (MRM) and parallel-reaction monitoring (PRM), employ specific mass spectrometric technologies to quantify protein levels by comparing the transitions of surrogate endogenous (ENDO) peptides with those of stable isotope-labeled (SIL) peptide counterparts. These methods utilizing amino acid analyzed (AAA) SIL peptides warrant sensitive and precise measurements required for targeted MS assays. Compared with MRM, PRM provides higher experimental throughput by simultaneously acquiring all transitions of the target peptides and thereby compensates for different ion suppressions among transitions of a target peptide. However, PRM still suffers different ion suppressions between ENDO and SIL peptides due to spray instability, as the ENDO and SIL peptides were monitored at different liquid chromatography (LC) retention times. Here we introduce a new targeted MS method, termed wideband PRM (WBPRM), that is designed for high-throughput targeted MS analysis. WBPRM employs a wide isolation window for simultaneous fragmentation of both ENDO and SIL peptides along with multiplexed single ion monitoring (SIM) scans for enhanced MS sensitivity of the target peptides. Compared with PRM, WBPRM was demonstrated to provide increased sensitivity, precision, and reproducibility of quantitative measurements of target peptides with increased throughput, allowing more target peptide measurements in a shortened experiment time. WBPRM is a straightforward adaptation to a manufacturer-provided MS method, making it an easily implementable technique, particularly in complex biological samples where the demand for higher precision, sensitivity, and efficiency is paramount.


Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Humanos , Espectrometria de Massas/métodos , Peptídeos/análise , Peptídeos/química , Ensaios de Triagem em Larga Escala/métodos , Marcação por Isótopo
3.
Clin Proteomics ; 16: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31049047

RESUMO

Certain tumors such as pancreatic ductal adenocarcinoma (PDAC) are known to contain a variety of hydrolytic enzymes including RNases and proteases that may lead to degradation of RNA and proteins during sample processing. For such tumor tissues with RNA instability, RNAlater containing a high concentration of quaternary ammonium sulfates that denature RNA-hydrolyzing enzymes is often used to protect RNAs from hydrolysis. Although a few studies have been carried out to determine the effect of RNAlater on DNA and RNA, whether RNAlater influences the proteome and phosphoproteome is largely unknown. In this study we carried out a systematic and comprehensive analysis of the effect of RNAlater on the proteome and phosphoproteome using high-resolution mass spectrometry. PDAC tissues from three patients were individually pulverized and the tissue powders of each patient were divided into two portions, one of which was incubated in RNAlater at 4 °C for 24 h (RNAlater tissue) while the other was kept at - 80 °C (frozen tissue). Comprehensive quantitative profiling experiments on the RNAlater tissues and the frozen tissues resulted in the identification of 99,136 distinct peptides of 8803 protein groups and 17,345 phosphopeptides of 16,436 phosphosites. The data exhibited no significant quantitative changes in both proteins and phosphorylation between the RNAlater tissues and the frozen tissue. In addition, the phosphoproteome data showed heterogeneously activated pathways among the three patients that were not altered by RNAlater. These results indicate that the tissue preservation method using RNAlater can be effectively used on PDAC tissues for proteogenomic studies where preservation of intact DNA, RNA and proteins is prerequisite. Data from this study are available via ProteomeXchange with the identifier PXD010710.

4.
Mol Carcinog ; 57(7): 947-954, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29528141

RESUMO

The molecular mechanisms underlying the pathogenesis of diffuse-type gastric cancer (DGC) have not been adequately explored due to a scarcity of appropriate animal models. A recently developed tool well suited for this line of investigation is the Pdx-1-Cre;Cdh1F/+ ;Trp53F/F ;Smad4F/F (pChe PS) mouse model that spontaneously develops metastatic DGC showing nearly complete E-cadherin loss. Here, we performed a proteogenomic analysis to uncover the molecular changes induced by the concurrent targeting of E-cadherin, p53, and Smad4 loss. The gene expression profiles of mouse DGCs and in vivo gastric phenotypes from various combinations of gene knockout demonstrated that these mutations collaborate to activate cancer-associated pathways to generate aggressive DGC. Of note, WNT-mediated epithelial-to-mesenchymal transition (EMT) and extracellular matrix (ECM)-cytokine receptor interactions were prominently featured. In particular, the WNT target gene osteopontin (OPN) that functions as an ECM cytokine is highly upregulated. In validation experiments, OPN contributed to DGC stemness by promoting cancer stem cell (CSC) survival and chemoresistance. It was further found that Bcl-xL acts as a targetable downstream effector of OPN in DGC CSC survival. In addition, Zeb2 and thymosin-ß4 (Tß4) were identified as prime candidates as suppressors of E-cadherin expression from the remaining Cdh1 allele during DGC development. Specifically, Tß4 suppressed E-cadherin expression and anoikis while promoting cancer cell growth and migration. Collectively, these proteogenomic analyses broaden and deepen our understanding of the contribution of key driver mutations in the stepwise carcinogenesis of DGC through novel effectors, namely OPN and Tß4.


Assuntos
Caderinas/genética , Carcinogênese/genética , Genoma/genética , Proteoma/genética , Proteína Smad4/genética , Neoplasias Gástricas/genética , Proteína Supressora de Tumor p53/genética , Animais , Antígeno CD48/genética , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia , Estômago/patologia , Neoplasias Gástricas/patologia , Transcriptoma/genética , Regulação para Cima/genética
5.
Mol Cell Proteomics ; 15(11): 3461-3472, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27601597

RESUMO

Sarpogrelate is an antiplatelet agent widely used to treat arterial occlusive diseases. Evaluation of platelet aggregation is essential to monitor therapeutic effects of sarpogrelate. Currently, no molecular signatures are available to evaluate platelet aggregation. Here, we performed comprehensive proteome profiling of platelets collected from 18 subjects before and after sarpogrelate administration using LC-MS/MS analysis coupled with extensive fractionation. Of 5423 proteins detected, we identified 499 proteins affected by sarpogrelate and found that they strongly represented cellular processes related to platelet activation and aggregation, including cell activation, coagulation, and vesicle-mediated transports. Based on the network model of the proteins involved in these processes, we selected three proteins (cut-like homeobox 1; coagulation factor XIII, B polypeptide; and peptidylprolyl isomerase D) that reflect the platelet aggregation-related processes after confirming their alterations by sarpogrelate in independent samples using Western blotting. Our proteomic approach provided a protein profile predictive of therapeutic effects of sarpogrelate.


Assuntos
Plaquetas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Inibidores da Agregação Plaquetária/administração & dosagem , Proteômica/métodos , Succinatos/administração & dosagem , Plaquetas/metabolismo , Cromatografia Líquida , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Espectrometria de Massas em Tandem
6.
Mol Cell Proteomics ; 15(5): 1681-91, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26969716

RESUMO

Retinal vascular hyperpermeability causes macular edema, leading to visual deterioration in retinal diseases such as diabetic retinopathy and retinal vascular occlusion. Dysregulation of junction integrity between endothelial cells by vascular endothelial growth factor (VEGF) was shown to cause retinal vascular hyperpermeability. Accordingly, anti-VEGF agents have been used to treat retinal vascular hyperpermeability. However, they can confer potential toxicity through their deleterious effects on maintenance and survival of neuronal and endothelial cells in the retina. Thus, it is important to identify novel therapeutic targets for retinal vascular hyperpermeability other than VEGF. Here, we prepared murine retinas showing VEGF-induced vascular leakage from superficial retinal vascular plexus and prevention of VEGF-induced leakage by anti-VEGF antibody treatment. We then performed comprehensive proteome profiling of these samples and identified retinal proteins for which abundances were differentially expressed by VEGF, but such alterations were inhibited by anti-VEGF antibody. Functional enrichment and network analyses of these proteins revealed the ß2 integrin pathway, which can prevent dysregulation of junction integrity between endothelial cells through cytoskeletal rearrangement, as a potential therapeutic target for retinal vascular hyperpermeability. Finally, we experimentally demonstrated that inhibition of the ß2 integrin pathway salvaged VEGF-induced retinal vascular hyperpermeability, supporting its validity as an alternative therapeutic target to anti-VEGF agents.


Assuntos
Antígenos CD18/metabolismo , Proteômica/métodos , Doenças Retinianas/metabolismo , Vasos Retinianos/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Anticorpos/administração & dosagem , Anticorpos/farmacologia , Permeabilidade Capilar , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Mapas de Interação de Proteínas/efeitos dos fármacos , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/tratamento farmacológico , Vasos Retinianos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Anal Chem ; 88(23): 11734-11741, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27801565

RESUMO

Proteomics aims to achieve complete profiling of the protein content and protein modifications in cells, tissues, and biofluids and to quantitatively determine changes in their abundances. This information serves to elucidate cellular processes and signaling pathways and to identify candidate protein biomarkers and/or therapeutic targets. Analyses must therefore be both comprehensive and efficient. Here, we present a novel online two-dimensional reverse-phase/reverse-phase liquid chromatography separation platform, which is based on a newly developed online noncontiguous fractionating and concatenating device (NCFC fractionator). In bottom-up proteomics analyses of a complex proteome, this system provided significantly improved exploitation of the separation space of the two RPs, considerably increasing the numbers of peptides identified compared to a contiguous 2D-RP/RPLC method. The fully automated online 2D-NCFC-RP/RPLC system bypassed a number of labor-intensive manual processes required with the previously described offline 2D-NCFC RP/RPLC method, and thus, it offers minimal sample loss in a context of highly reproducible 2D-RP/RPLC experiments.


Assuntos
Sistemas On-Line , Peptídeos/análise , Proteômica , Cromatografia de Fase Reversa/instrumentação , Humanos , Proteômica/instrumentação
8.
Analyst ; 140(16): 5700-6, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26153568

RESUMO

We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.


Assuntos
Cromatografia Líquida de Alta Pressão , Proteômica/instrumentação , Automação
9.
Nat Cancer ; 4(2): 290-307, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36550235

RESUMO

We report a proteogenomic analysis of pancreatic ductal adenocarcinoma (PDAC). Mutation-phosphorylation correlations identified signaling pathways associated with somatic mutations in significantly mutated genes. Messenger RNA-protein abundance correlations revealed potential prognostic biomarkers correlated with patient survival. Integrated clustering of mRNA, protein and phosphorylation data identified six PDAC subtypes. Cellular pathways represented by mRNA and protein signatures, defining the subtypes and compositions of cell types in the subtypes, characterized them as classical progenitor (TS1), squamous (TS2-4), immunogenic progenitor (IS1) and exocrine-like (IS2) subtypes. Compared with the mRNA data, protein and phosphorylation data further classified the squamous subtypes into activated stroma-enriched (TS2), invasive (TS3) and invasive-proliferative (TS4) squamous subtypes. Orthotopic mouse PDAC models revealed a higher number of pro-tumorigenic immune cells in TS4, inhibiting T cell proliferation. Our proteogenomic analysis provides significantly mutated genes/biomarkers, cellular pathways and cell types as potential therapeutic targets to improve stratification of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Proteogenômica , Animais , Camundongos , Humanos , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Biomarcadores , Neoplasias Pancreáticas
10.
Exp Mol Med ; 54(9): 1461-1471, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36056186

RESUMO

Mitochondria in neural progenitors play a crucial role in adult hippocampal neurogenesis by being involved in fate decisions for differentiation. However, the molecular mechanisms by which mitochondria are related to the genetic regulation of neuronal differentiation in neural progenitors are poorly understood. Here, we show that mitochondrial dysfunction induced by amyloid-beta (Aß) in neural progenitors inhibits neuronal differentiation but has no effect on the neural progenitor stage. In line with the phenotypes shown in Alzheimer's disease (AD) model mice, Aß-induced mitochondrial damage in neural progenitors results in deficits in adult hippocampal neurogenesis and cognitive function. Based on hippocampal proteome changes after mitochondrial damage in neural progenitors identified through proteomic analysis, we found that lysine demethylase 5A (KDM5A) in neural progenitors epigenetically suppresses differentiation in response to mitochondrial damage. Mitochondrial damage characteristically causes KDM5A degradation in neural progenitors. Since KDM5A also binds to and activates neuronal genes involved in the early stage of differentiation, functional inhibition of KDM5A consequently inhibits adult hippocampal neurogenesis. We suggest that mitochondria in neural progenitors serve as the checkpoint for neuronal differentiation via KDM5A. Our findings not only reveal a cell-type-specific role of mitochondria but also suggest a new role of KDM5A in neural progenitors as a mediator of retrograde signaling from mitochondria to the nucleus, reflecting the mitochondrial status.


Assuntos
Doença de Alzheimer , Neurônios , Proteoma , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Diferenciação Celular , Lisina/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteoma/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA