RESUMO
BACKGROUND: Seasonal variation and sunlight exposure can impact serum vitamin D levels, potentially influencing lupus symptoms. We investigated seasonal vitamin D levels and their correlation with clinical manifestations and disease activity in systemic lupus erythematosus (SLE). METHODS: Serum 25(OH) vitamin D3 (25(OH)D3) levels were categorised as deficient (25(OH)D3 < 10 ng/mL), insufficient (10-30 ng/mL) and sufficiency (>30 ng/mL) in participants analysed in winter (n = 407) and summer (n = 377). Logistic regression analysis was performed to assess the impact of vitamin D levels on achieving a lupus low disease activity state (LLDAS), stratified by season. RESULTS: The mean serum 25(OH)D3 levels differed significantly between the winter and summer measurement groups (22.4 vs. 24.2 ng/mL; p = .018). The prevalences of vitamin D deficiency, insufficiency and sufficiency in the winter group were 12.8%, 66.6% and 20.6%, respectively, compared with 4.5%, 67.9% and 27.6% in the summer group. Achieving LLDAS was highest in the vitamin D sufficiency group (winter: 56.6%, summer: 55%) and lowest in the vitamin D deficiency group (winter: 15.4%, summer: 13.6%), with significant differences (all p < .001). Multivariate analysis identified SLE disease activity index ≤4, normal anti-double-stranded DNA and vitamin D sufficiency as significant factors for achieving LLDAS in both seasons. CONCLUSIONS: Sufficient vitamin D levels are important for achieving LLDAS in patients with SLE during winter and summer. Therefore, physicians should pay attention to the adequacy of vitamin D levels and consider recommending vitamin D supplementation for patients with vitamin D insufficiency.
Assuntos
Lúpus Eritematoso Sistêmico , Deficiência de Vitamina D , Humanos , Vitamina D , Estações do Ano , Deficiência de Vitamina D/epidemiologia , Lúpus Eritematoso Sistêmico/epidemiologia , VitaminasRESUMO
Systemic lupus erythematosus (SLE) is a chronic inflammatory disease caused by autoantibodies. Serum samples from patients with SLE (n = 10) were compared with those from normal controls (NCs, n = 5) using 21K protein chip analysis to identify a biomarker for SLE, revealing 63 SLE-specific autoantibodies. The anti-chaperonin-containing t-complex polypeptide-1 (TCP1) antibody exhibited higher expression in patients with SLE than in NCs. To validate the specificity of the anti-TCP1 antibody in SLE, dot blot analysis was conducted using sera from patients with SLE (n = 100), rheumatoid arthritis (RA; n = 25), Behçet's disease (BD; n = 28), and systemic sclerosis (SSc; n = 30) and NCs (n = 50). The results confirmed the detection of anti-TCP1 antibodies in 79 of 100 patients with SLE, with substantially elevated expression compared to both NCs and patients with other autoimmune diseases. We performed an enzyme-linked immunosorbent assay to determine the relative amounts of anti-TCP1 antibodies; markedly elevated anti-TCP1 antibody levels were detected in the sera of patients with SLE (50.1 ± 17.3 arbitrary unit (AU), n = 251) compared to those in NCs (33.9 ± 9.3 AU), RA (35 ± 8.7 AU), BD (37.5 ± 11.6 AU), and SSc (43 ± 11.9 AU). These data suggest that the anti-TCP1 antibody is a potential diagnostic biomarker for SLE.
Assuntos
Autoanticorpos , Biomarcadores , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/sangue , Biomarcadores/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Ensaio de Imunoadsorção Enzimática/métodos , Estudos de Casos e ControlesRESUMO
Immunoglobulin gamma-3 chain C (IGHG3) levels have been detected in the blood and tissue of patients with systemic lupus erythematosus (SLE). This study aims to assess its clinical value by measuring and comparing levels of IGHG3 in different body fluids in patients with SLE. The levels of IGHG3 in saliva, serum, and urine from 181 patients with SLE and 99 healthy controls were measured and analyzed. In patients with SLE and healthy controls, salivary IGHG3 levels were 3078.9 ± 2473.8 and 1413.6 ± 1075.3 ng/mL, serum IGHG3 levels were 478.1 ± 160.9 and 364.4 ± 97.9 µg/mL, and urine IGHG3 levels were 64.0 ± 74.5 and 27.1 ± 16.2 ng/mL, respectively (all p < 0.001). Salivary IGHG3 was correlated with ESR (correlation coefficient [r], 0.173; p = 0.024). Serum IGHG3 was correlated with leukocyte count (r, -0.219; p = 0.003), lymphocyte count (r, 0.22; p = 0.03), anti-dsDNA antibody positivity (r, 0.22; p = 0.003), and C3 levels (r, -0.23; p = 0.002). Urinary IGHG3 was correlated with hemoglobin level (r, -0.183; p = 0.021), ESR (r, 0.204; p = 0.01), anti-dsDNA antibody positivity (r, 0.262; p = 0.001), C3 levels (r, -0.202; p = 0.011), and SLE disease activity index (r, 0.332; p = 0.01). Urinary IGHG3 was higher in patients with nephritis than in those without (119.5 ± 110.0 vs. 49.8 ± 54.4 ng/mL; p < 0.01). IGHG3 was increased in the saliva, serum, and urine of patients with SLE. While salivary IGHG3 was not identified to be specific to SLE disease activity, serum IGHG3 showed correlations with clinical characteristics. Urinary IGHG3 levels were associated with disease activity and renal involvement in SLE.
Assuntos
Líquidos Corporais , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Nefrite , Humanos , Saliva , Nefrite/complicações , Imunoglobulinas , Nefrite Lúpica/urina , BiomarcadoresRESUMO
Toll-like receptors (TLRs) play a major role in the innate immune system. Several studies have shown the regulatory effects of TLR-mediated pathways on immune and inflammatory diseases. Dysregulated functions of TLRs within the endosomal compartment, including TLR7/9 trafficking, may cause systemic lupus erythematosus (SLE). TLR signaling pathways are fine-tuned by Toll/interleukin-1 receptor (TIR) domain-containing adapters, leading to interferon (IFN)-α production. This study describes a TLR inhibitor peptide 1 (TIP1) that primarily suppresses the downstream signaling mediated by TIR domain-containing adapters in an animal model of lupus and patients with SLE. The expression of most downstream proteins of the TLR7/9/myeloid differentiation factor 88 (MyD88)/IFN regulatory factor 7 signaling was downregulated in major tissues such as the kidney, spleen, and lymph nodes of treated mice. Furthermore, the pathological analysis of the kidney tissue confirmed that TIP1 could improve inflammation in MRL/lpr mice. TIP1 treatment downregulated many downstream proteins associated with TLR signaling, such as MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, and IFN-α, in the peripheral blood mononuclear cells of patients with SLE. In conclusion, our data suggest that TIP1 can serve as a potential candidate for the treatment of SLE.
Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação/prevenção & controle , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Receptores Toll-Like/antagonistas & inibidores , Animais , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismoRESUMO
We aimed to characterize the salivary protein components and identify biomarkers in patients with systemic lupus erythematosus (SLE). A proteomic analysis using two-dimensional gel electrophoresis and mass spectrometry was performed to determine the alterations of salivary proteins between patients with SLE and healthy controls, and the concentrations of the candidate proteins were measured through Western blot analysis and the enzyme-linked immunosorbent assay. The 10 differentially expressed protein spots were immunoglobulin gamma-3 chain C region (IGHG3), immunoglobulin alpha-1 chain C region, protein S100A8, lactoferrin, leukemia-associated protein 7, and 8-oxoguanine DNA glycosylase. The patients with SLE exhibited enhanced salivary IGHG3 (3.9 ± 2.15 pg/mL) and lactoferrin (4.7 ± 1.8 pg/mL) levels compared to patients with rheumatoid arthritis (1.8 ± 1.01 pg/mL and 3.2 ± 1.6 pg/mL, respectively; p < 0.001 for both) or healthy controls (2.2 ± 1.64 pg/mL and 2.2 ± 1.7 pg/mL, respectively; p < 0.001 for both). The salivary IGHG3 levels correlated with the erythrocyte sedimentation rate (r = 0.26, p = 0.01), anti-double-stranded DNA (dsDNA) antibody levels (r = 0.25, p = 0.01), and nephritis (r = 0.28, p = 0.01). The proteomic analysis revealed that the salivary IGHG3 levels were associated with SLE and lupus disease activity, suggesting that salivary IGHG3 may be a promising noninvasive biomarker for SLE.
Assuntos
Imunoglobulina G/análise , Cadeias gama de Imunoglobulina/análise , Lúpus Eritematoso Sistêmico/diagnóstico , Saliva/química , Adulto , Biomarcadores/análise , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Liver X receptors (LXRs) have emerged as important regulators of inflammatory gene expression. Previously, we had reported that an LXRα gene promoter polymorphism (-1830 T > C) is associated with systemic lupus erythematosus (SLE). Therefore, we assessed cytokine expression in relation to LXRα polymorphism in monocyte-derived macrophages from patients with SLE. Macrophages were obtained after 72 hours of culture of human monocytes supplemented with phorbol 12-myristate 13-acetate. Cells were transfected with LXRα promoter constructs. Additionally, peripheral blood mononuclear cell- (PBMC-) derived macrophages from the patients were evaluated for proinflammatory cytokines in relation to the genotypes of LXRα -1830 T > C. The expression of LXRα was increased in macrophages; levels of proinflammatory cytokines were decreased with LXRα expression. Production of proinflammatory cytokines varied depending on LXRα -1830 T > C genotype. In particular, expression of LXRα was decreased and that of proinflammatory cytokines was increased for LXRα -1830 TC genotype compared to that for TT genotype. The data were consistent in PBMC-derived macrophages from patients with SLE. Increased proinflammatory cytokines is related to TLR7 and TLR9 expression. These data suggest that the expression levels of LXRα, according to LXRα -1830 T > C genotype, may contribute to the inflammatory response by induction of inflammatory cytokines in SLE.
Assuntos
Leucócitos Mononucleares/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Benzoatos/farmacologia , Benzilaminas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Genótipo , Humanos , Hidrocarbonetos Fluorados/farmacologia , Immunoblotting , Leucócitos Mononucleares/efeitos dos fármacos , Receptores X do Fígado/agonistas , Macrófagos/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Sulfonamidas/farmacologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismoRESUMO
INTRODUCTION: Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with heterogeneous clinical manifestations mediated by immune dysregulation. OBJECTIVES: We aimed to analyze the metabolomic differences in free fatty acids (FFAs) between patients with SLE and healthy controls (HCs). METHODS: In this study, the levels of 24 FFAs, as their tert-butyldimethylsilyl derivatives, in the plasma of 41 patients with SLE and 41 HCs, were investigated using gas chromatography with mass spectrometry in selected-ion monitoring mode. RESULTS: The results showed that patients with SLE and HCs had significantly different levels of 13 of the 24 FFAs. The levels of myristic, palmitoleic, oleic, and eicosenoic acids were significantly higher, whereas the levels of caproic, caprylic, linoleic, stearic, arachidonic, eicosanoic, behenic, lignoceric, and hexacosanoic acids were significantly lower in patients with SLE, than in the HCs. In the partial-correlation analysis of the FFA profiles and markers of disease activity of SLE, several metabolic markers correlated with SLE disease activity. CONCLUSIONS: Our results provide a comprehensive understanding of the relationship between FFAs and markers of SLE disease activity. Thus, this approach has promising potential for the discovery of metabolic biomarkers of SLE.
Assuntos
Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Febre/diagnóstico , Lúpus Eritematoso Sistêmico/diagnóstico , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Metabolômica/métodos , Pessoa de Meia-IdadeRESUMO
Introduction: This study aimed to demonstrate the potential of activated leukocyte cell adhesion molecule (ALCAM), hemopexin (HPX), and peroxiredoxin 6 (PRDX6) as urine biomarkers for systemic lupus erythematosus (SLE). Methods: Urine samples were collected from 138 Korean patients with SLE from the Ajou Lupus Cohort and 39 healthy controls (HC). The concentrations of urine biomarkers were analyzed using enzyme-linked immunosorbent assay kits specific for ALCAM, HPX, and PRDX6, respectively. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic utility, and Pearson's correlation analysis was conducted to assess the relationships between the disease activity and urine biomarkers. Results: Patients with SLE and patients with lupus nephritis (LN) showed significantly elevated ALCAM, HPX, and PRDX6 levels compared with HCs. ALCAM, HPX, and PRDX6 showed significant diagnostic values, especially for lupus nephritis (LN), with areas under the receiver operating characteristic curve for LN was 0.850 for ALCAM (95% CI, 0.778-0.921), 0.781 for HPX (95% CI, 0.695-0.867), and 0.714 for PRDX6 (95% CI, 0.617-0.812). Correlation analysis revealed that all proteins were significantly associated with anti-double stranded DNA antibody (ALCAM, r = 0.350, p < 0.001; HPX, r = 0.346, p < 0.001; PRDX6, r = 0.191, p = 0.026) and SLEDAI (ALCAM, r = 0.526, p < 0.001; HPX, r = 0.479, p < 0.001; PRDX6, r = 0.262, p = 0.002). Results from the follow-up of the three biomarker levels in these patients revealed a significant decrease, showing a positive correlation with changes in SLEDAI-2k scores (ALCAM, r = 0.502, p < 0.001; HPX, r = 0.475, p < 0.001; PRDX6, r = 0.245, p = 0.026), indicating their potential as indicators for tracking disease activity. Discussions: Urinary ALCAM, HPX, and PRDX6 levels have diagnostic value and reflect disease activity in Korean patients with SLE, emphasizing their potential for non-invasive monitoring and treatment response evaluation.
Assuntos
Biomarcadores , Lúpus Eritematoso Sistêmico , Peroxirredoxina VI , Humanos , Feminino , Masculino , Biomarcadores/urina , Adulto , Lúpus Eritematoso Sistêmico/urina , Lúpus Eritematoso Sistêmico/diagnóstico , República da Coreia , Peroxirredoxina VI/urina , Pessoa de Meia-Idade , Proteínas Fetais/urina , Estudos Longitudinais , Índice de Gravidade de Doença , Adulto Jovem , Antígenos CD/urina , Curva ROC , Moléculas de Adesão Celular Neuronais/urina , Estudos de Casos e Controles , Nefrite Lúpica/urina , Nefrite Lúpica/diagnóstico , Molécula de Adesão de Leucócito AtivadoRESUMO
Osx plays essential roles in regulating osteoblast and chondrocyte differentiation, and bone formation during mouse skeletal development. However, many questions remain regarding the requirement for Osx in different cell lineages. In this study, we asked whether Osx is required for craniofacial bone formation derived from cranial neural crest (CNC) cells. The Osx gene was conditionally inactivated in CNC-derived cells using a Wnt1-Cre recombination system. Neural crest-specific inactivation of Osx resulted in the complete absence of intramembranous skeletal elements derived from the CNC, and CNC-derived endochondral skeletal elements were also affected by Osx inactivation. Interestingly, Osx inactivated CNC-derived cells, which were recapitulated by lacZ expression, occupied the same regions of craniofacial skeletal elements as observed for controls. However, cells lost their osteogenic ability to differentiate into functional osteoblasts by Osx inactivation. These results suggest that Osx is important for craniofacial bone formation by CNC-derived cells. This finding provides novel insights of the regulation of craniofacial development by the gene network and transcription factors, and the understanding of human diseases caused by neural crest developmental abnormalities.
Assuntos
Anormalidades Craniofaciais/genética , Ossos Faciais/embriologia , Crista Neural/anormalidades , Osteogênese/genética , Fatores de Transcrição/fisiologia , Animais , Anormalidades Craniofaciais/patologia , Ossos Faciais/anormalidades , Ossos Faciais/patologia , Inativação Gênica , Integrases/genética , Camundongos , Camundongos Transgênicos , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Proteína Wnt1/genéticaRESUMO
Objective: Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by the production of autoantibodies and high cholesterol levels. HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitors have exhibited anti-inflammatory effects in several clinical trials. We conducted this study to evaluate the effect of rosuvastatin on inflammatory responses in lupus-prone mice. Methods: MRL/lpr mice were intraperitoneally injected with rosuvastatin (10 mg/kg, n=4) or vehicle (2% dimethyl sulfoxide, n=4) five times a week from 13 to 17 weeks of age. The serum levels of low-density lipoprotein (LDL) cholesterol and autoantibodies were measured, as well as the urine levels of albumin. Renal tissues were stained for histopathological analysis. Concentrations of key inflammatory cytokines were measured in the serum, and messenger RNA (mRNA) levels in target organs (kidney, spleen, and lymph nodes) were evaluated. Results: Rosuvastatin treatment significantly decreased serum LDL cholesterol concentration in MRL/lpr mice. However, the clinical manifestations and autoantibody titres did not improve with rosuvastatin treatment. In addition, serum inflammatory cytokines and proteinuria did not change. Histopathological analysis of the kidneys revealed no improvement. When assessing the expression of mRNA, treatment with rosuvastatin decreased tumor necrosis alpha and interleukin-17 concentration in spleen and kidney tissue and in the kidneys and lymph nodes of MRL/lpr mice, respectively. Conclusion: Although it can decrease inflammatory cytokines in the lymphoid organs and kidneys of MRL/lpr mice, treatment with rosuvastatin is insufficient to alleviate SLE.
RESUMO
Objectives: This study aimed to elucidate the potential of serum, urine, and saliva S100 calcium-binding protein A8 protein (S100A8) levels as biomarkers for systemic lupus erythematosus (SLE). Methods: Serum, urine, and saliva samples were obtained from 249 patients with SLE from the Ajou lupus cohort and 52 age- and sex-matched healthy controls (HCs). The concentrations of S100A8 were quantified using an ELISA, and a receiver operating characteristic curve was used to analyze whether they may be used as biomarkers for diagnosing SLE. Results: Among 249 SLE patients included in our study, the mean SLE disease activity index (SLEDAI)-2K was 7.16 ± 5.61, and the number of patients with lupus flare was 11. Patients with SLE showed a 2.7-fold increase in serum S100A8 levels compared with that in HCs (1,890.6 vs. 709 pg/ml, p < 0.001). In urine and saliva, the average S100A8 levels were significantly higher in patients with SLE compared with those in HCs (urine, 2,029.4 vs. 1,096.7 pg/ml, p = 0.001; saliva, 290,496.3 vs. 47,742 pg/ml, p < 0.001). For SLE diagnosis, the area under the receiver operating characteristic curve was 0.831 for serum S100A8 (95% CI, 0.765-0.897), 0.751 for urine S100A8 (95% CI, 0.648-0.854), and 0.729 for salivary S100A8 (95% CI, 0.646-0.812). Pearson's correlation analysis showed that S100A8 in serum, urine, and saliva was significantly associated with the SLEDAI (r = 0.267, p < 0.001; r = 0.274, p < 0.001; and r = 0.629, p < 0.001, respectively). Among the clinical manifestations, nephritis was the most influential factor related to SLE in the concentration of S100A8 in serum, urine, and saliva. Conclusion: This is the first study to show that the expression of S100A8 in serum, urine, and saliva is significantly higher in patients with SLE than in HCs and is associated with disease activity markers. Therefore, we suggest that S100A8 protein could be a potential biomarker for SLE.
Assuntos
Calgranulina A , Lúpus Eritematoso Sistêmico , Biomarcadores , Humanos , Saliva , Exacerbação dos SintomasRESUMO
Osterix (Osx) has been identified as an osteoblast-specific transcription factor that is required for skeletogenesis. Here, we examined the expression of Osx in non-skeletal tissues. Together with a high expression in bones, Osx was expressed in the mouse brain, and its expression gradually increased during postnatal developmental periods. Specific-expression of Osx was observed primarily in the olfactory bulb (OB), with little in the cerebral cortex and the cerebellum. Osx expression was examined in the OB of Osx heterozygous mice with a LacZ knock-in in the Osx locus, which resulted in strong X-gal staining in the OB. X-gal-positive cells were located in the mitral and granule cell layers of the adult mouse OB, which was confirmed by immunohistochemical analysis with anti-Osx antibody. Osx expression overlapped extensively with NeuN, a marker of mature neuron, indicating that the Osx-positive cells were mature interneurons of the granule cell layer in the adult mouse OB. This is the first study to examine the in vivo expression of Osx in the mouse OB, and this finding may indicate a new function of Osx as a marker for mature neuroblasts in the OB.
Assuntos
Bulbo Olfatório/metabolismo , Fatores de Transcrição/biossíntese , Animais , Genes Reporter , Camundongos , Camundongos Mutantes , Neurônios/metabolismo , Bulbo Olfatório/crescimento & desenvolvimento , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , beta-Galactosidase/genéticaRESUMO
Objective: Systemic lupus erythematosus (SLE) is a common chronic autoimmune inflammatory disease According to recent studies, signaling through Toll-like receptor (TLR) protein, which promotes the production of inflammatory cytokines, leads to the development of SLE TLR-inhibitory peptide 1 (TIP1) has been newly identified for the treatment of autoimmune diseases. Methods: The effect of TIP1 was analyzed in an SLE mouse model (MRL/lpr) The mice in the control treatment group (n=5) were administered an intravenous injection of phosphate-buffered saline twice weekly, whereas the mice in the TIP1 treatment group (n=6) were administered an intravenous injection of TIP1 (1 nmol/g) twice weekly MRL/mpj mice (n=5) were selected as normal controls The mice were injected for 4 weeks between 14 and 18 weeks of age, followed by assays of their spleen, kidneys, lymph nodes, serum, and urine. Results: The antinuclear antibody and inflammatory cytokine (interferon-α) in the serum as well as levels of albumin in the urine of the mice in the TIP1 treatment group had decreased when compared to those of mice in the control treatment group Kidney inflammation in mice in the TIP1 treatment group was alleviated The mRNA expression levels of TLR7- or TLR9-related downstream signaling molecules also decreased in all organs of the mice in the TIP1 treatment group. Conclusion: Intravenous treatment with TIP1 reduces symptoms and markers of inflammation in MRL/lpr mice Hence, TIP1 is a promising medication for the treatment of SLE.
RESUMO
Despite being crucial for combating microbes, paradoxical Toll-like receptors (TLRs) signaling have been associated with the aggravation of multiple immune disorders such as systemic lupus erythematosus, psoriasis, rheumatoid arthritis, and nonalcoholic steatohepatitis. The stoichiometry and precise arrangement of the interaction of adapters (via their Toll/interleukin-1 receptor [TIR] domains) are indispensable for the activation of TLRs and of downstream signaling cascades. Among adapters, plasma membrane-anchored MyD88 adaptor-like (MAL) has the potential for BB-loop-mediated self-oligomerization and interacts with other TIR domain-containing adaptors through αC and αD helices. Here, we used information on the MAL-αC interface to exploit its pharmacophores and to design a decoy peptide (MIP2) with broad-range TLR-inhibitory abilities. MIP2 abrogated MyD88- and TRIF-dependent lipopolysaccharide (LPS)-induced TLR4 signaling in murine and human cell lines and manifested a therapeutic potential in models of psoriasis, systemic lupus erythematosus, nonalcoholic steatohepatitis, and sepsis. Levels of hallmark serological and histological biomarkers were significantly restored and the disease symptoms were substantially ameliorated by MIP2 treatment of the animals. Collectively, our biophysical, in vitro, and in vivo findings suggest that MIP2 has broad specificity for TLRs and may be effective in modulating autoimmune complications caused by microbial or environmental factors.
Assuntos
Doenças Autoimunes , Receptor 4 Toll-Like , Animais , Doenças Autoimunes/tratamento farmacológico , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismoRESUMO
BACKGROUND: TLRs are some of the actively pursued drug-targets in immune disorders. Owing to a recent surge in the cognizance of TLR structural biology and signalling pathways, numerous therapeutic modulators, ranging from low-molecular-weight organic compounds to polypeptides and nucleic acid agents have been developed. METHODS: A penetratin-conjugated small peptide (TIP3), derived from the core ß-sheet of TIRAP, was evaluated in vitro by monitoring the TLR-mediated cytokine induction and quantifying the protein expression using western blot. The therapeutic potential of TIP3 was further evaluated in TLR-dependent in vivo disease models. FINDINGS: TIP3 blocks the TLR4-mediated cytokine production through both the MyD88- and TRIF-dependent pathways. A similar inhibitory-effect was exhibited for TLR3 but not on other TLRs. A profound therapeutic effect was observed in vivo, where TIP3 successfully alleviated the inflammatory response in mice model of collagen-induced arthritis and ameliorated the disease symptoms in psoriasis and SLE models. INTERPRETATION: Our data suggest that TIP3 may be a potential lead candidate for the development of effective therapeutics against TLR-mediated autoimmune disorders. FUNDING: This work was supported by the National Research Foundation of Korea (NRF-2019M3A9A8065098, 2019M3D1A1078940 and 2019R1A6A1A11051471). The funders did not have any role in the design of the present study, data collection, data analysis, interpretation, or the writing of the manuscript.
Assuntos
Glicoproteínas de Membrana/química , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em Folha beta , Receptores de Interleucina-1/química , Receptor 4 Toll-Like/química , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Autoimunidade , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Óxido Nítrico/metabolismo , Peptídeos/metabolismo , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismoRESUMO
Systemic lupus erythematosus (SLE) is characterized by impaired clearance of apoptotic cells. Milk fat globule epidermal growth factor 8 (MFGE8) is a protein that connects αvß3 integrin on phagocytic macrophages with phosphatidylserine on apoptotic cells. We investigated whether genetic variation of the MFGE8 gene and serum MFGE8 concentration are associated with SLE. Single nucleotide polymorphisms (SNPs) were genotyped and serum concentrations were analyzed. The rs2271715 C allele and rs3743388 G allele showed higher frequency in SLE than in healthy subjects (HSs). Three haplotypes were found among 4 SNPs (rs4945, rs1878327, rs2271715, and rs3743388): AACG, CGCG, and CGTC. CGCG haplotype was significantly more common in SLE than in HSs. rs4945 was associated with the erythrocyte sedimentation rate and rs1878327 was associated with alopecia, C-reactive protein, complement 3, anti-dsDNA antibody, and high disease activity. rs2271715 and rs3743388 were associated with renal disease, cumulative glucocorticoid dose, and cyclophosphamide and mycophenolate mofetil use. Serum MFGE8 concentrations were significantly higher in SLE than in HSs. Furthermore, the levels of MFGE8 were significantly higher in SLE than HSs of the rs2271715 CC genotype. In conclusion, MFGE8 genetic polymorphisms are associated not only with susceptibility to SLE but also with disease activity through modulation of gene expression.
Assuntos
Antígenos de Superfície/genética , Lúpus Eritematoso Sistêmico/genética , Proteínas do Leite/genética , Adulto , Antígenos de Superfície/sangue , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica/imunologia , Predisposição Genética para Doença , Haplótipos , Voluntários Saudáveis , Humanos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Proteínas do Leite/sangue , Proteínas do Leite/imunologia , Proteínas do Leite/metabolismo , Polimorfismo de Nucleotídeo Único , República da Coreia , Adulto JovemRESUMO
Coupling is the process that links bone resorption to bone formation in a temporally and spatially coordinated manner within the remodeling cycle. Several lines of evidence point to the critical roles of osteoclast-derived coupling factors in the regulation of osteoblast performance. Here, we used a fractionated secretomic approach and identified the axon-guidance molecule SLIT3 as a clastokine that stimulated osteoblast migration and proliferation by activating ß-catenin. SLIT3 also inhibited bone resorption by suppressing osteoclast differentiation in an autocrine manner. Mice deficient in Slit3 or its receptor, Robo1, exhibited osteopenic phenotypes due to a decrease in bone formation and increase in bone resorption. Mice lacking Slit3 specifically in osteoclasts had low bone mass, whereas mice with either neuron-specific Slit3 deletion or osteoblast-specific Slit3 deletion had normal bone mass, thereby indicating the importance of SLIT3 as a local determinant of bone metabolism. In postmenopausal women, higher circulating SLIT3 levels were associated with increased bone mass. Notably, injection of a truncated recombinant SLIT3 markedly rescued bone loss after an ovariectomy. Thus, these results indicate that SLIT3 plays an osteoprotective role by synchronously stimulating bone formation and inhibiting bone resorption, making it a potential therapeutic target for metabolic bone diseases.
Assuntos
Comunicação Autócrina , Reabsorção Óssea/metabolismo , Proteínas de Membrana/metabolismo , Osteoclastos/metabolismo , Osteogênese , Animais , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Diferenciação Celular , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/patologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas RoundaboutRESUMO
Free fatty acid receptor 4 (FFA4) has been reported to be a receptor for n-3 fatty acids (FAs). Although n-3 FAs are beneficial for bone health, a role of FFA4 in bone metabolism has been rarely investigated. We noted that FFA4 was more abundantly expressed in both mature osteoclasts and osteoblasts than their respective precursors and that it was activated by docosahexaenoic acid. FFA4 knockout (Ffar4(-/-)) and wild-type mice exhibited similar bone masses when fed a normal diet. Because fat-1 transgenic (fat-1(Tg+)) mice endogenously converting n-6 to n-3 FAs contain high n-3 FA levels, we crossed Ffar4(-/-) and fat-1(Tg+) mice over two generations to generate four genotypes of mice littermates: Ffar4(+/+);fat-1(Tg-), Ffar4(+/+);fat-1(Tg+), Ffar4(-/-);fat-1(Tg-), and Ffar4(-/-);fat-1(Tg+). Female and male littermates were included in ovariectomy- and high-fat diet-induced bone loss models, respectively. Female fat-1(Tg+) mice decreased bone loss after ovariectomy both by promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In a high-fat diet-fed model, male fat-1(Tg+) mice had higher bone mass resulting from stimulated bone formation and reduced bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In vitro studies supported the role of FFA4 as n-3 FA receptor in bone metabolism. In conclusion, FFA4 is a dual-acting factor that increases osteoblastic bone formation and decreases osteoclastic bone resorption, suggesting that it may be an ideal target for modulating metabolic bone diseases.
Assuntos
Reabsorção Óssea/metabolismo , Ácidos Graxos Ômega-3/sangue , Fêmur/metabolismo , Osteogênese/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Reabsorção Óssea/genética , Dieta Hiperlipídica , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ovariectomia , Receptores Acoplados a Proteínas G/genéticaRESUMO
Osterix (Osx) is an essential transcription factor for osteoblast differentiation and bone formation. Osx knockout show a complete absence of bone formation, whereas Osx conditional knockout in osteoblasts produce an osteopenic phenotype after birth. Here, we questioned whether Osx has a potential role in regulating physiological homeostasis. In Osx heterozygotes expressing low levels of Osx in bones, the expression levels of pro-inflammatory cytokines were significantly elevated, indicating that reduced Osx expression may reflect an inflammatory-prone state. In particular, the expression of interleukin-6, a key mediator of chronic inflammation, was increased in Osx heterozygotes and decreased in Osx overexpressing osteoblasts, and transcriptionally down-regulated by Osx. Although no significant differences were revealed in renal morphology and function between Osx heterozygotes and wild-type under normoxic conditions, recovery of kidneys after ischemic damage was remarkably delayed in Osx heterozygotes, as indicated by elevated blood urea nitrogen and creatinine levels, and by morphological alterations consistent with acute tubular necrosis. Eventually, protracted low Osx expression level caused an inflammatory-prone state in the body, resulting in the enhanced susceptibility to renal injury and the delayed renal repair after ischemia/reperfusion. This study suggests that the maintenance of Osx expression in bone is important in terms of preventing the onset of an inflammatory-prone state.
Assuntos
Interleucina-6/biossíntese , Rim/metabolismo , Rim/patologia , Regeneração , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Heterozigoto , Inflamação/patologia , Interleucina-6/genética , Rim/fisiopatologia , Testes de Função Renal , Camundongos , Modelos Biológicos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese , Fator de Transcrição Sp7 , Transcrição GênicaRESUMO
Farnesoid X receptor (FXR) is a nuclear receptor that functions as a bile acid sensor controlling bile acid homeostasis. We investigated the role of FXR in regulating bone metabolism. We identified the expression of FXR in calvaria and bone marrow cells, which gradually increased during osteoblastic differentiation in vitro. In male mice, deletion of FXR (FXR(-/-) ) in vivo resulted in a significant reduction in bone mineral density by 4.3% to 6.6% in mice 8 to 20 weeks of age compared with FXR(+/+) mice. Histological analysis of the lumbar spine showed that FXR deficiency reduced the bone formation rate as well as the trabecular bone volume and thickness. Moreover, tartrate-resistant acid phosphatase (TRACP) staining of the femurs revealed that both the osteoclast number and osteoclast surface were significantly increased in FXR(-/-) mice compared with FXR(+/+) mice. At the cellular level, induction of alkaline phosphatase (ALP) activities was blunted in primary calvarial cells in FXR(-/-) mice compared with FXR(+/+) mice in concert with a significant reduction in type I collagen a1(Col1a1), ALP, and runt-related transcription factor 2 (Runx2) gene expressions. Cultures of bone marrow-derived macrophages from FXR(-/-) mice exhibited an increased number of osteoclast formations and protein expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). In female FXR(-/-) mice, although bone mineral density (BMD) was not significantly different from that in FXR(+/+) mice, bone loss was accelerated after an ovariectomy compared with FXR(+/+) mice. In vitro, activation of FXR by bile acids (chenodeoxycholic acid [CDCA] or 6-ECDCA) or FXR agonists (GW4064 or Fexaramine) significantly enhanced osteoblastic differentiation through the upregulation of Runx2 and enhanced extracellular signal-regulated kinase (ERK) and ß-catenin signaling. FXR agonists also suppressed osteoclast differentiation from bone marrow macrophages. Finally, administration of a farnesol (FOH 1%) diet marginally prevented ovariectomy (OVX)-induced bone loss and enhanced bone mass gain in growing C57BL/6J mice. Taken together, these results suggest that FXR positively regulates bone metabolism through both arms of the bone remodeling pathways; ie, bone formation and resorption.