Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291334

RESUMO

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Assuntos
Corpo Estriado , Doença de Huntington , Humanos , Animais , Cerebelo/metabolismo , Doença de Huntington/genética , Modelos Animais de Doenças
2.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333326

RESUMO

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships between CAG expansions, death of specific cell types, and molecular events associated with these processes are not established. Here we employed fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise in striatal medium spiny neurons (MSNs) and cholinergic interneurons, in cerebellar Purkinje neurons, and at mATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1 in a concentration-dependent manner. Our data indicate that ongoing CAG expansions are not sufficient for cell death, and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.

3.
Med Sci Sports Exerc ; 51(5): 970-978, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30557194

RESUMO

INTRODUCTION: Endorphins, endocannabinoids, monoamines, and neurotrophins have all been implicated in the euphoric response to endurance running, known as a runner's high (RH). The epitranscriptional mechanisms regulating this effect have not been defined. Here, we investigate peripheral micro-ribonucleic acid (miRNA) changes unique to athletes experiencing postrun euphoria, yielding insights into gene networks that control an RH. METHODS: A cohort study involving 25 collegiate runners (48% females, age = 20 ± 1 yr) examined salivary RNA levels before and after a long-distance run. Participants were divided into RH and nonrunner's high (NRH) groups based on surveys of four criteria (mood, lost sense of time, run quality, and euphoria). Physiological measures were also recorded (temperature, heart rate, blood pressure, pupillary dilatation, and salivary serotonin). Levels of miRNAs and their messenger RNA targets were compared across pre- and postrun samples from RH and NRH groups with two-way ANOVA. Representation of opioid, gamma-aminobutyic acid (GABA), endocannabinoid, neurotrophin, serotonergic, and dopaminergic pathways was assessed in DIANA miRPath. Pearson's correlation analyses examined relationships between miRNAs and RH indices. RESULTS: RH participants (n = 13) demonstrated postrun mydriasis (P = 0.046) and hypothermia (P = 0.043) relative to NRH participants (n = 12) but had no difference in serotonin dynamics (P = 0.88). Six miRNAs (miR-194-5p, miR-4676-3p, miR-4254, miR-4425, miR-1273-3p, miR-6743-5p) exhibited significant effects (false discovery rate P value < 0.05) across pre- or postrun and RH/NRH groups. These miRNAs displayed target enrichment for opioid (P = 2.74E-06) and GABA (P = 0.00016) pathways. miR-1237-3p levels were related with lost sense of time (R = 0.40). Mitogen-activated protein kinase (MAPK11), an endocannabinoid target of miR-1273-3p, was nominally elevated in RH participants (false discovery rate P value = 0.11). CONCLUSIONS: Unique dynamics in miRNA concentration occur in athletes with subjective/objective evidence of RH, targeting genes implicated endorphin, endocannabinoid, and GABAergic signaling.


Assuntos
Euforia/fisiologia , MicroRNAs/análise , Corrida/fisiologia , Transcriptoma , Estudos de Coortes , Endocanabinoides , Endorfinas , Feminino , Humanos , Masculino , Saliva , Serotonina , Adulto Jovem , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA