Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(11): e1010666, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318525

RESUMO

The production of costly public goods (as distinct from metabolic byproducts) has largely been understood through the realization that spatial structure can minimize losses to non-producing "cheaters" by allowing for the positive assortment of producers. In well-mixed systems, where positive assortment is not possible, the stable production of public goods has been proposed to depend on lineages that become indispensable as the sole producers of those goods while their neighbors lose production capacity through genome streamlining (the Black Queen Hypothesis). Here, we develop consumer-resource models motivated by nitrogen-fixing, siderophore-producing bacteria that consider the role of colimitation in shaping eco-evolutionary dynamics. Our models demonstrate that in well-mixed environments, single "public goods" can only be ecologically and evolutionarily stable if they are partially privatized (i.e., if producers reserve a portion of the product pool for private use). Colimitation introduces the possibility of subsidy: strains producing a fully public good can exclude non-producing strains so long as the producing strain derives sufficient benefit from the production of a second partially private good. We derive a lower bound for the degree of privatization necessary for production to be advantageous, which depends on external resource concentrations. Highly privatized, low-investment goods, in environments where the good is limiting, are especially likely to be stably produced. Coexistence emerges more rarely in our mechanistic model of the external environment than in past phenomenological approaches. Broadly, we show that the viability of production depends critically on the environmental context (i.e., external resource concentrations), with production of shared resources favored in environments where a partially-privatized resource is scarce.


Assuntos
Evolução Biológica , Ecologia
2.
Proc Natl Acad Sci U S A ; 114(1): E9-E18, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994146

RESUMO

The 2010 Deepwater Horizon disaster introduced an unprecedented discharge of oil into the deep Gulf of Mexico. Considerable uncertainty has persisted regarding the oil's fate and effects in the deep ocean. In this work we assess the compound-specific rates of biodegradation for 125 aliphatic, aromatic, and biomarker petroleum hydrocarbons that settled to the deep ocean floor following release from the damaged Macondo Well. Based on a dataset comprising measurements of up to 168 distinct hydrocarbon analytes in 2,980 sediment samples collected within 4 y of the spill, we develop a Macondo oil "fingerprint" and conservatively identify a subset of 312 surficial samples consistent with contamination by Macondo oil. Three trends emerge from analysis of the biodegradation rates of 125 individual hydrocarbons in these samples. First, molecular structure served to modulate biodegradation in a predictable fashion, with the simplest structures subject to fastest loss, indicating that biodegradation in the deep ocean progresses similarly to other environments. Second, for many alkanes and polycyclic aromatic hydrocarbons biodegradation occurred in two distinct phases, consistent with rapid loss while oil particles remained suspended followed by slow loss after deposition to the seafloor. Third, the extent of biodegradation for any given sample was influenced by the hydrocarbon content, leading to substantially greater hydrocarbon persistence among the more highly contaminated samples. In addition, under some conditions we find strong evidence for extensive degradation of numerous petroleum biomarkers, notably including the native internal standard 17α(H),21ß(H)-hopane, commonly used to calculate the extent of oil weathering.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Sedimentos Geológicos/análise , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Alcanos/análise , Desastres , Golfo do México , Hidrocarbonetos/análise , Campos de Petróleo e Gás , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
3.
Proc Natl Acad Sci U S A ; 111(45): 15906-11, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349409

RESUMO

The sinking of the Deepwater Horizon in the Gulf of Mexico led to uncontrolled emission of oil to the ocean, with an official government estimate of ∼ 5.0 million barrels released. Among the pressing uncertainties surrounding this event is the fate of ∼ 2 million barrels of submerged oil thought to have been trapped in deep-ocean intrusion layers at depths of ∼ 1,000-1,300 m. Here we use chemical distributions of hydrocarbons in >3,000 sediment samples from 534 locations to describe a footprint of oil deposited on the deep-ocean floor. Using a recalcitrant biomarker of crude oil, 17α(H),21ß(H)-hopane (hopane), we have identified a 3,200-km(2) region around the Macondo Well contaminated by ∼ 1.8 ± 1.0 × 10(6) g of excess hopane. Based on spatial, chemical, oceanographic, and mass balance considerations, we calculate that this contamination represents 4-31% of the oil sequestered in the deep ocean. The pattern of contamination points to deep-ocean intrusion layers as the source and is most consistent with dual modes of deposition: a "bathtub ring" formed from an oil-rich layer of water impinging laterally upon the continental slope (at a depth of ∼ 900-1,300 m) and a higher-flux "fallout plume" where suspended oil particles sank to underlying sediment (at a depth of ∼ 1,300-1,700 m). We also suggest that a significant quantity of oil was deposited on the ocean floor outside this area but so far has evaded detection because of its heterogeneous spatial distribution.

4.
Trends Microbiol ; 32(2): 142-150, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37689487

RESUMO

Life can be stressful. One way to deal with stress is to simply wait it out. Microbes do this by entering a state of reduced activity and increased resistance commonly called 'dormancy'. But what is dormancy? Different scientific disciplines emphasize distinct traits and phenotypic ranges in defining dormancy for their microbial species and system-specific questions of interest. Here, we propose a unified definition of microbial dormancy, using a broad framework to place earlier discipline-specific definitions in a new context. We then discuss how this new definition and framework may improve our ability to investigate dormancy using multi-omics tools. Finally, we leverage our framework to discuss the diversity of genomic mechanisms for dormancy in an extreme environment that challenges easy definitions - the permafrost.


Assuntos
Genômica , Fenótipo
5.
Nat Microbiol ; 9(11): 2892-2908, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39354152

RESUMO

Interactions between microbiomes and metabolites play crucial roles in the environment, yet how these interactions drive greenhouse gas emissions during ecosystem changes remains unclear. Here we analysed microbial and metabolite composition across a permafrost thaw gradient in Stordalen Mire, Sweden, using paired genome-resolved metagenomics and high-resolution Fourier transform ion cyclotron resonance mass spectrometry guided by principles from community assembly theory to test whether microorganisms and metabolites show concordant responses to changing drivers. Our analysis revealed divergence between the inferred microbial versus metabolite assembly processes, suggesting distinct responses to the same selective pressures. This contradicts common assumptions in trait-based microbial models and highlights the limitations of measuring microbial community-level data alone. Furthermore, feature-scale analysis revealed connections between microbial taxa, metabolites and observed CO2 and CH4 porewater variations. Our study showcases insights gained by using feature-level data and microorganism-metabolite interactions to better understand metabolic processes that drive greenhouse gas emissions during ecosystem changes.


Assuntos
Bactérias , Dióxido de Carbono , Gases de Efeito Estufa , Metagenômica , Metano , Microbiota , Pergelissolo , Pergelissolo/microbiologia , Gases de Efeito Estufa/metabolismo , Gases de Efeito Estufa/análise , Metano/metabolismo , Dióxido de Carbono/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Suécia , Ecossistema , Microbiologia do Solo
6.
Curr Biol ; 18(6): 442-8, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18356052

RESUMO

Although the oceanic cyanobacterium Prochlorococcus harvests light with a chlorophyll antenna [1-3] rather than with the phycobilisomes that are typical of cyanobacteria, some strains express genes that are remnants of the ancestral Synechococcus phycobilisomes [4]. Similarly, some Prochlorococcus cyanophages, which often harbor photosynthesis-related genes [5], also carry homologs of phycobilisome pigment biosynthesis genes [6, 7]. Here, we investigate four such genes in two cyanophages that both infect abundant Prochlorococcus strains [8]: homologs of heme oxygenase (ho1), 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (pebA), ferredoxin (petF) in the myovirus P-SSM2, and a phycocyanobilin:ferredoxin oxidoreductase (pcyA) homolog in the myovirus P-SSM4. We demonstrate that the phage homologs mimic the respective host activities, with the exception of the divergent phage PebA homolog. In this case, the phage PebA single-handedly catalyzes a reaction for which uninfected host cells require two consecutive enzymes, PebA and PebB. We thus renamed the phage enzyme phycoerythrobilin synthase (PebS). This gene, and other pigment biosynthesis genes encoded by P-SSM2 (petF and ho1), are transcribed during infection, suggesting that they can improve phage fitness. Analyses of global ocean metagenomes show that PcyA and Ho1 occur in both cyanobacteria and their phages, whereas the novel PebS-encoding gene is exclusive to phages.


Assuntos
Myoviridae/genética , Ficobilinas/biossíntese , Ficobiliproteínas/genética , Ficoeritrina/biossíntese , Prochlorococcus/virologia , Biliverdina/análogos & derivados , Biliverdina/metabolismo , Ecossistema , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Viral , Heme Oxigenase-1/genética , Myoviridae/enzimologia , Oceanos e Mares , Ficobiliproteínas/biossíntese
7.
RNA ; 15(12): 2129-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19946040

RESUMO

The class I ligase was among the first ribozymes to have been isolated from random sequences and represents the catalytic core of several RNA-directed RNA polymerase ribozymes. The ligase is also notable for its catalytic efficiency and structural complexity. Here, we report an improved version of this ribozyme, arising from selection that targeted the kinetics of the chemical step. Compared with the parent ribozyme, the improved ligase achieves a modest increase in rate enhancement under the selective conditions and shows a sharp reduction in [Mg(2+)] dependence. Analysis of the sequences and kinetics of successful clones suggests which mutations play the greatest part in these improvements. Moreover, backbone and nucleobase interference maps of the parent and improved ligase ribozymes complement the newly solved crystal structure of the improved ligase to identify the functionally significant interactions underlying the catalytic ability and structural complexity of the ligase ribozyme.


Assuntos
Ligases/química , Ligases/metabolismo , Magnésio/química , Magnésio/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA Catalítico/química , RNA Catalítico/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Variação Genética , Cinética , Ligases/genética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Catalítico/genética , Análise de Sequência de DNA
8.
Nat Commun ; 12(1): 3076, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031405

RESUMO

Changes in the sequence of an organism's genome, i.e., mutations, are the raw material of evolution. The frequency and location of mutations can be constrained by specific molecular mechanisms, such as diversity-generating retroelements (DGRs). DGRs have been characterized from cultivated bacteria and bacteriophages, and perform error-prone reverse transcription leading to mutations being introduced in specific target genes. DGR loci were also identified in several metagenomes, but the ecological roles and evolutionary drivers of these DGRs remain poorly understood. Here, we analyze a dataset of >30,000 DGRs from public metagenomes, establish six major lineages of DGRs including three primarily encoded by phages and seemingly used to diversify host attachment proteins, and demonstrate that DGRs are broadly active and responsible for >10% of all amino acid changes in some organisms. Overall, these results highlight the constraints under which DGRs evolve, and elucidate several distinct roles these elements play in natural communities.


Assuntos
Ecologia , Evolução Molecular , Microbiota/genética , Microbiota/fisiologia , Mutação , Bactérias/genética , Bacteriófagos/fisiologia , Biodiversidade , Ecossistema , Microbiologia Ambiental , Variação Genética , Metagenoma , Filogenia , Retroelementos
9.
Front Microbiol ; 8: 186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289403

RESUMO

The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane and CO2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO2. The mats' autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.

10.
ISME J ; 9(10): 2232-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25848872

RESUMO

Carbon fixation has a central role in determining cellular redox poise, increasingly understood to be a key parameter in cyanobacterial physiology. In the cyanobacterium Prochlorococcus-the most abundant phototroph in the oligotrophic oceans-the carbon-concentrating mechanism is reduced to the bare essentials. Given the ability of Prochlorococcus populations to grow under a wide range of oxygen concentrations in the ocean, we wondered how carbon and oxygen physiology intersect in this minimal phototroph. Thus, we examined how CO2:O2 gas balance influenced growth and chlorophyll fluorescence in Prochlorococcus strain MED4. Under O2 limitation, per-cell chlorophyll fluorescence fell at all CO2 levels, but still permitted substantial growth at moderate and high CO2. Under CO2 limitation, we observed little growth at any O2 level, although per-cell chlorophyll fluorescence fell less sharply when O2 was available. We explored this pattern further by monitoring genome-wide transcription in cells shocked with acute limitation of CO2, O2 or both. O2 limitation produced much smaller transcriptional changes than the broad suppression seen under CO2 limitation and CO2/O2 co-limitation. Strikingly, both CO2 limitation conditions initially evoked a transcriptional response that resembled the pattern previously seen in high-light stress, but at later timepoints we observed O2-dependent recovery of photosynthesis-related transcripts. These results suggest that oxygen has a protective role in Prochlorococcus when carbon fixation is not a sufficient sink for light energy.


Assuntos
Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Prochlorococcus/fisiologia , Carbono/metabolismo , Clorofila/fisiologia , Perfilação da Expressão Gênica , Fotossíntese/fisiologia , Prochlorococcus/crescimento & desenvolvimento , Prochlorococcus/metabolismo
11.
Nat Commun ; 6: 6585, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25798780

RESUMO

In the evolutionary arms race between microbes, their parasites, and their neighbours, the capacity for rapid protein diversification is a potent weapon. Diversity-generating retroelements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad variants of a target gene. Originally discovered in pathogens, these retroelements have been identified in bacteria and their viruses, but never in archaea. Here we report the discovery of intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding domains, potentially generating >10(18) protein variants. The two single-cell nanoarchaeal genomes each possess ≥4 distinct DGRs. Against an expected background of low genome-wide mutation rates, these results demonstrate a previously unsuspected potential for rapid, targeted sequence diversification in intraterrestrial archaea and their viruses.


Assuntos
Proteínas Arqueais/genética , Vírus de Archaea/genética , Variação Genética , Metagenoma/genética , Nanoarchaeota/genética , Archaea/virologia , Sequência de Bases , Dados de Sequência Molecular , Taxa de Mutação , Nanoarchaeota/virologia , Retroelementos
12.
Nat Struct Mol Biol ; 18(5): 571-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21516097

RESUMO

Among antibody classes, IgE has a uniquely slow dissociation rate from, and high affinity for, its cell surface receptor FcɛRI. We show the structural basis for these key determinants of the ability of IgE to mediate allergic hypersensitivity through the 3.4-Å-resolution crystal structure of human IgE-Fc (consisting of the Cɛ2, Cɛ3 and Cɛ4 domains) bound to the extracellular domains of the FcɛRI α chain. Comparison with the structure of free IgE-Fc (reported here at a resolution of 1.9 Å) shows that the antibody, which has a compact, bent structure before receptor engagement, becomes even more acutely bent in the complex. Thermodynamic analysis indicates that the interaction is entropically driven, which explains how the noncontacting Cɛ2 domains, in place of the flexible hinge region of IgG antibodies, contribute together with the conformational changes to the unique binding properties of IgE.


Assuntos
Imunoglobulina E/química , Receptores de IgE/química , Substituição de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Receptores de IgE/genética , Termodinâmica
13.
Science ; 326(5957): 1271-5, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19965478

RESUMO

Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.


Assuntos
RNA Catalítico/química , Pareamento de Bases , Sequência de Bases , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Polinucleotídeo Ligases/química , Polinucleotídeo Ligases/metabolismo , RNA Catalítico/metabolismo , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo
14.
J Mol Biol ; 392(2): 319-33, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19328811

RESUMO

Bacterial microcompartments (BMCs) are polyhedral bodies, composed entirely of proteins, that function as organelles in bacteria; they promote subcellular processes by encapsulating and co-localizing targeted enzymes with their substrates. The best-characterized BMC is the carboxysome, a central part of the carbon-concentrating mechanism that greatly enhances carbon fixation in cyanobacteria and some chemoautotrophs. Here we report the first structural insights into the carboxysome of Prochlorococcus, the numerically dominant cyanobacterium in the world's oligotrophic oceans. Bioinformatic methods, substantiated by analysis of gene expression data, were used to identify a new carboxysome shell component, CsoS1D, in the genome of Prochlorococcus strain MED4; orthologs were subsequently found in all cyanobacteria. Two independent crystal structures of Prochlorococcus MED4 CsoS1D reveal three features not seen in any BMC-domain protein structure solved to date. First, CsoS1D is composed of a fused pair of BMC domains. Second, this double-domain protein trimerizes to form a novel pseudohexameric building block for incorporation into the carboxysome shell, and the trimers further dimerize, forming a two-tiered shell building block. Third, and most strikingly, the large pore formed at the 3-fold axis of symmetry appears to be gated. Each dimer of trimers contains one trimer with an open pore and one whose pore is obstructed due to side-chain conformations of two residues that are invariant among all CsoS1D orthologs. This is the first evidence of the potential for gated transport across the carboxysome shell and reveals a new type of building block for BMC shells.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Prochlorococcus/química , Prochlorococcus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Citoplasma/ultraestrutura , Perfilação da Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Prochlorococcus/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA