Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170232

RESUMO

Variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant's impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact. The performance of 12 prediction methods, along with SpliceAI and CADD, was compared on the 56 functionally validated variants. The maximum accuracy achieved was 82% from two different approaches, one weighting SpliceAI scores by minor allele frequency, and one applying the recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of sensitivity, while an ensemble method combining multiple prediction tools and information from databases exceeded all others for specificity. Several challenge methods equalled or exceeded the performance of SpliceAI, with ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for further improvements to splicing prediction methods for successful clinical application.

2.
medRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39132495

RESUMO

Background: Hypertrophic cardiomyopathy (HCM) is an inherited cardiac condition affecting ~1 in 500 and exhibits marked genetic heterogeneity. Previously published in 2019, 57 HCM-associated genes were curated providing the first systematic evaluation of gene-disease validity. Here we report work by the ClinGen Hereditary Cardiovascular Disorders Gene Curation Expert Panel (HCVD-GCEP) to reappraise the clinical validity of previously curated and new putative HCM genes. Methods: The ClinGen systematic gene curation framework was used to re-classify the gene-disease relationships for HCM and related syndromic entities involving left ventricular hypertrophy. Genes previously curated were included if their classification was not definitive, and if the time since curation was >2-3 years. New genes with literature assertions for HCM were included for initial evaluation. Existing genes were curated for new inheritance patterns where evidence existed. Curations were presented on twice monthly calls, with the HCVD-GCEP composed of 29 individuals from 21 institutions across 6 countries. Results: Thirty-one genes were re-curated and an additional 5 new potential HCM-associated genes were curated. Among the re-curated genes, 17 (55%) genes changed classification: 1 limited and 4 disputed (from no known disease relationship), 9 disputed (from limited), and 3 definitive (from moderate). Among these, 3 (10%) genes had a clinically relevant upgrade, including TNNC1, a 9th sarcomere gene with definitive HCM association. With new evidence, two genes were curated for multiple inheritance patterns (TRIM63, disputed for autosomal dominant but moderate for autosomal recessive; ALPK3, strong for autosomal dominant and definitive for recessive). CSRP3 was curated for a semi-dominant mode of inheritance (definitive). Nine (29%) genes were downgraded to disputed, further discouraging clinical reporting of variants in these genes. Five genes recently reported to cause HCM were curated: RPS6KB1 and RBM20 (limited), KLHL24 and MT-TI (moderate), and FHOD3 (definitive). Conclusions: We report 29 genes with definitive, strong or moderate evidence of causation for HCM or isolated LVH, including sarcomere, sarcomere-associated and syndromic conditions.

3.
Eur Heart J Case Rep ; 7(12): ytad572, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116480

RESUMO

Background: FLNC encodes for filamin-C, a protein expressed in Z-discs of cardiac and skeletal muscle, involved in intracellular signalling and mechanical stabilization. Variants can cause diverse phenotypes with skeletal (myofibrillar or distal myopathy) and/or cardiac (hypertrophic, restrictive, and arrhythmogenic cardiomyopathies) manifestations. Truncating variants have recently been implicated in arrhythmogenic cardiomyopathy (ACM) without skeletal disease. Case summary: Retrospective review of medical records, including cardiac investigations, was performed for families attending a specialized clinic with a FLNC truncating variant (FLNCtv). Variants were classified according to accepted variant interpretation criteria. Of seven families identified, six had primary cardiac phenotypes with one nonsense and five frameshift variants (nonsense-mediated decay competent) identified. One family had no cardiac phenotype, with a pathogenic variant (p.Arg2467Alafs*62) identified as secondary genetic finding. Of the six with cardiac phenotypes, proband age at diagnosis ranged 27-35 years (four females). Five families experienced sudden cardiac death (SCD) of a young relative (age range: 30-43 years), and one patient listed for cardiac transplant. Left ventricular (LV) ejection fraction ranged from 13 to 46%, with LV fibrosis (late gadolinium enhancement) on cardiac imaging or on postmortem histology seen in three families. Two families had one genotype-positive/phenotype-negative relative. Discussion: The FLNCtv causes a left-sided ACM phenotype with a high risk of severe cardiac outcomes including end-stage heart failure and SCD. Incomplete penetrance is observed with implications for reporting secondary genetic findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA