Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 120(46): 9235-9243, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27779403

RESUMO

A computational study aimed at accurately predicting the strength of the anion-π binding of substituted benzenes is presented. The anion-π binding energies (Ebind) of 37 substituted benzenes and the parent benzene, with chloride or bromide were investigated at the MP2(full)/6-311++G** level of theory. In addition, energy decomposition analysis was performed on 27 selected chloride-arene complexes via symmetry adapted perturbation theory (SAPT), using the SAPT2+ approach. Initial efforts aimed to correlate the anion-π Ebind values with the sum of the Hammett constants σp (Σσp) or σm (Σσm), as done by others. This proved a decent approach for predicting the binding strength of aromatics with electron-withdrawing substituents. For the Cl--substituted benzene Ebind values, the correlation with the Σσp and Σσm values of aromatics with electron-withdrawing groups had r2 values of 0.89 and 0.87 respectively. For the Br--substituted benzene Ebind values, the correlation with the Σσp and Σσm values of aromatics with electron-withdrawing groups had r2 values of 0.90 and 0.87. However, adding aromatics with electron-donating substituents to the investigation caused the correlation to deteriorate. For the Cl--substituted benzene complexes the correlation between Ebind values and the Hammett constants had r2 = 0.81 for Σσp and r2 = 0.84 for Σσm. For the Br--substituted benzene complexes, the respective r2 values were 0.71 for Σσp and 0.79 for Σσm. The deterioration in correlation upon consideration of substituted benzenes with electron-donating substituents is due to the anion-π binding energies becoming more attractive regardless of what type of substituent is added to the aromatic. A similar trend has been reported for parallel face-to-face substituted benzene-benzene binding. This is certainly counter to what electrostatic arguments would predict for trends in anion-π binding energies, and this discrepancy is further highlighted by the SAPT2+ calculated electrostatic component energies (Eele). The Eele values for the Cl--substituted benzene anion-π complexes are all more binding than the Eele value for the Cl--benzene complex, with the exception of chloride-1,3,5-trimethylbenzene. Again, this is a similar trend to what has been reported for parallel face-to-face substituted benzene-benzene binding. A discussion on this surprising result is presented. In addition, an improved approach to predicting the relative anion-π binding strength of substituted benzene is developed using the results of the SAPT2+ calculations.

2.
Comput Struct Biotechnol J ; 1: e201204004, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24688634

RESUMO

Non-covalent interactions of aromatics are important in a wide range of chemical and biological applications. The past two decades have seen numerous reports of arene-arene binding being understood in terms Hammett substituent constants, and similar analyses have recently been extended to cation-arene and anion-arene binding. It is not immediately clear why electrostatic Hammett parameters should work so well in predicting the binding for all three interactions, given that different intermolecular forces dominate each interaction. This review explores such anomalies, and summarizes how Hammett substituent constants have been employed to understand the non-covalent binding in arene-arene, cation-arene and anion-arene interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA