Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679520

RESUMO

A secrecy energy efficiency optimization scheme for a multifunctional unmanned aerial vehicle (UAV) assisted mobile edge computing system is proposed to solve the computing power and security issues in the Internet-of-Things scenario. The UAV can switch roles between a computing UAV and jamming UAV based on the channel conditions. To ensure the security of the content and the system energy efficiency in the process of offloading computing tasks, the UAV trajectory, uplink transmit power, user scheduling, and offload task are jointly optimized, and an updated-rate assisted block coordinate descent (BCD) algorithm is used. Simulation results show that this scheme efficiently improves the secrecy performance and energy efficiency of the system. Compared with the benchmark scheme, the secrecy energy efficiency of the scheme is improved by 38.5%.


Assuntos
Conservação de Recursos Energéticos , Dispositivos Aéreos não Tripulados , Algoritmos , Benchmarking , Simulação por Computador
2.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177577

RESUMO

As a new technology for reconstructing communication environments, intelligent reflecting surfaces (IRSs) can be applied to UAV communication systems. However, some challenges exist in IRS-assisted UAV communication system design, such as physical layer security issues, IRS design, and power consumption issues owing to the limitation of the hardware. Therefore, a secrecy capacity optimization scheme for an active IRS-assisted unmanned aerial vehicle (UAV) communication system is proposed to solve multi-user security issues. In particular, controllable power amplifiers are integrated into reflecting units to solve the problem of blocked links, and the UAV can dynamically select the served user according to the channel quality. In order to maximize the system average achievable secrecy capacity and ensure the power constraints of the UAV and active IRS, user scheduling, UAV trajectory, beamforming vector, and reflection matrix are jointly optimized, and the block coordinate descent (BCD) algorithm is applied to solve this non-convex problem. Simulation results show that the active IRS-assisted UAV communication scheme can significantly weaken the "multiplicative fading" effect and enhance the system secrecy capacity by 55.4% and 11.9% compared with the schemes with passive IRS and without optimal trajectory, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA