Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 91(4): 2955-2963, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30689353

RESUMO

Establishing an accurate, simple, and rapid serodiagnosis method aiming for specific cancer antigens is critically important for the clinical diagnosis, therapy, and prognostication of cancer. Currently, surface-enhanced Raman scattering (SERS) readout techniques challenge fluorescent-based detection methods in terms of both optical stability and more importantly multiple detection capability, which become more desirable for clinical diagnostics. We thus started using an interference-free mixing SERS emission (m-SERS) readout to simultaneously indicate, for the first time, three specific liver cancer antigens, including α-fetoprotein (AFP), carcinoembryonic antigen (CEA), and ferritin (FER), even in one clinical serum sample. Here, three triple bonds (C≡N and C≡C) coded SERS tags contribute separate SERS emissions located at 2105, 2159, and 2227 cm-1, respectively; must have one-to-one correspondence from AFP, to FER, to CEA, In the process of detection, the mature double antibody sandwich allows the formation of microscale core-satellite assembly structure between a magnetic bead (MB) and single SERS tags, and therefore a pure and single SERS emission can be observed under the routine excitation laser spot. Because of the action of magnetic force, the uniform 3D packing of SERS tags absorbed MBs will in contrast generate a so-called m-SERS signals. With the help of enrichment and separation by MBs, the proposed m-SERS immunoassay provides an extremely rapid, sensitive, and accurate solution for multiplex detection of antigens or other biomarkers. Herein, the limit of detection (LOD) for simultaneous m-SERS detection of AFP, CEA, and FER was 0.15, 20, and 4 pg/mL, respectively. As expected for 39 clinical serum samples, simultaneous detection of ternary specific antigens can significantly improve the accuracy of liver cancer diagnosis.


Assuntos
Antígenos de Neoplasias/análise , Neoplasias Hepáticas/diagnóstico por imagem , Ouro/química , Humanos , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
2.
J Colloid Interface Sci ; 661: 493-500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308889

RESUMO

In this study, we prepared two-dimensional Bi4Ti3O12 nanosheets doped with rare earth ions. The experimental results show that Bi4-xTmxTi3O12 exhibits the highest reduction performance among various rare earth doped Bi4Ti3O12 materials, with a CO yield of 7.25 µmol g-1h-1. Furthermore, a delayed reaction in Bi3.97Tm0.03Ti3O12 is observed upon a cessation of light irradiation. Theoretical calculations reveal that the introduction of Tm ion not only reduces the surface energy of (001) plane and make it preferential growth in Bi4Ti3O12, but also brings the intervening energy level of Tm ion (4f and 4d mixed orbital), which is closer to the conduction band of Bi4Ti3O12 and facilitates charge carrier accumulation in trap states. The electrons retained in the shallow traps promote the hysteresis reaction following a cessation of illumination. This work provides further insights into elucidating precise reduction reaction mechanisms underlying rare earth dopant on photocatalysts. This research provides enhanced insights into unraveling the precise reduction reaction mechanisms influenced by rare earth dopants in photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA