Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934541

RESUMO

Mesenchymal stem cells (MSCs) are the most promising seed cells for cell therapy. Comparing the biological and transcriptome gene characteristics of MSCs from different sources provides an important basis for the screening of clinically used cells. The main purpose of this experiment was to establish methods for the isolation and culture of MSCs from five different canine sources, including adipose tissue, bone marrow, umbilical cord, amniotic membrane, and placenta, and compare biological and transcriptome characteristics of MSCs, in order to provide a basis for the clinical application of canine MSCs. MSCs were isolated from Chinese pastoral dogs, and the following experiments were performed: (1) the third, sixth, and ninth generations of cells were counted, respectively, and a growth curve was plotted to calculate the MSC population doubling time; (2) the expression of CD34 and CD44 surface markers was studied by immunofluorescence; (3) the third generation of cells were used for osteogenetic and adipogenic differentiation experiments; and (4) MSC transcriptome profiles were performed using RNA sequencing. All of the five types of MSCs showed fibroblast-like adherent growth. The cell surface expressed CD44 instead of CD34; the third-generation MSCs had the highest proliferative activity. The average population doubling time of adipose mesenchymal stem cells (AD-MSCs), placenta mesenchymal stem cells (P-MSCs), bone marrow mesenchymal stem cells (BM-MSCs), umbilical cord mesenchymal stem cells (UC-MSCs), and amniotic mesenchymal stem cells (AM-MSCs) were 15.8 h, 21.2 h, 26.2 h, 35 h, and 41.9 h, respectively. All five types of MSCs could be induced to differentiate into adipocytes and osteoblasts in vitro, with lipid droplets appearing after 8 days and bone formation occurring 5 days after AD-MSC induction. However, the multilineage differentiation for the remaining of MSCs was longer compared to that of the AD-MSCs. The MSC transcriptome profiles showed that AD-MSC and BM-MSCs had the highest homology, while P-MSCs were significantly different compared to the other four types of MSCs. All the isolated MSCs had the main biological characteristics of MSCs. AD-MSCs had the shortest time for proliferation, adipogenesis, and osteogenic differentiation.


Assuntos
Cães/genética , Células-Tronco Mesenquimais/metabolismo , Especificidade de Órgãos/genética , Transcriptoma/genética , Animais , Biomarcadores/metabolismo , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Análise por Conglomerados , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Reprodutibilidade dos Testes
2.
Yi Chuan ; 35(10): 1153-66, 2013 Oct.
Artigo em Zh | MEDLINE | ID: mdl-24459889

RESUMO

Embryonic stem cells (ESCs) are pluripotent stem cells characterized by their ability to self-renew and their pluripotency to differentiate into all cell types. MicroRNA (miRNA) is a small non-coding RNA molecule which can regulate transcriptional and post-transcriptional gene expression, and may also play significant roles in regulating proliferation and differentiation of ESCs. The maintenance of pluripotency in ESCs may involve a regulatory network of many factors and pathways regulated by miRNA, which includes ESCs transcription factors, cell cycle regulation, epigenetic modifications as well as intracelluar signal transduction. This review mainly elaborates the biogenesis of miRNA, the miRNA families regulating the pluripotency of ESCs, and the effect of miRNA on the regulatory network of pluripotency in ESCs.


Assuntos
Células-Tronco Embrionárias/metabolismo , MicroRNAs/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Humanos , MicroRNAs/genética , Células-Tronco Pluripotentes/citologia , Transdução de Sinais
3.
Mol Cell Biol ; 39(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30455250

RESUMO

Spermatogonial stem cells (SSCs) are unipotent germ cells that are at the foundation of spermatogenesis and male fertility. However, the underlying molecular mechanisms governing SSC stemness and growth properties remain elusive. We have recently identified chromodomain helicase/ATPase DNA binding protein 1-like (Chd1l) as a novel regulator for SSC survival and self-renewal, but how these functions are controlled by Chd1l remains to be resolved. Here, we applied high-throughput small RNA sequencing to uncover the microRNA (miRNA) expression profiles controlled by Chd1l and showed that the expression levels of 124 miRNA transcripts were differentially regulated by Chd1l in SSCs. KEGG pathway analysis shows that the miRNAs that are differentially expressed upon Chd1l repression are significantly enriched in the pathways associated with stem cell pluripotency and proliferation. As a proof of concept, we demonstrate that one of the most highly upregulated miRNAs, miR-486, controls SSC stemness gene expression and growth properties. The matrix metalloproteinase 2 (MMP2) gene has been identified as a novel miR-486 target gene in the context of SSC stemness gene regulation and growth properties. Data from cotransfection experiments showed that Chd1l, miR-486, and MMP2 work in concert in regulating SSC stemness gene expression and growth properties. Finally, our data also revealed that MMP2 regulates SSC stemness gene expression and growth properties through activating ß-catenin signaling by cleaving N-cadherin and increasing ß-catenin nuclear translocation. Our data demonstrate that Chd1l-miR-486-MMP2 is a novel regulatory axis governing SSC stemness gene expression and growth properties, offering a novel therapeutic opportunity for treating male infertility.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/metabolismo , Células-Tronco Germinativas Adultas/citologia , Animais , Proliferação de Células/fisiologia , Células Cultivadas , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Masculino , Metaloproteinase 2 da Matriz/genética , Camundongos , MicroRNAs/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Testículo/citologia , Testículo/metabolismo , Fatores de Transcrição/metabolismo
4.
Stem Cells Int ; 2018: 1983025, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29861739

RESUMO

OBJECTIVE: The aim of this study was to assess the efficacy of canine umbilical cord mesenchymal stem cells (UC-MSCs) on the treatment of knee osteoarthritis in dogs. METHODS: Eight dogs were evenly assigned to two groups. The canine model of knee osteoarthritis was established by surgical manipulation of knee articular cartilage on these eight dogs. UC-MSCs were isolated from umbilical cord Wharton's jelly by 0.1% type collagenase I and identified by immunofluorescence staining and adipogenic and osteogenic differentiation in vitro. A suspension of allogeneic UC-MSCs (1 × 106) and an equal amount of physiological saline was injected into the cavitas articularis in the treated and untreated control groups, respectively, on days 1 and 3 posttreatment. The structure of the canine knee joint was observed by magnetic resonance imaging (MRI), B-mode ultrasonography, and X-ray imaging at the 3rd, 7th, 14th, and 28th days after treatment. Concurrently, the levels of IL-6, IL-7, and TNF-α in the blood of the examined dogs were measured. Moreover, the recovery of cartilage and patella surface in the treated group and untreated group was compared using a scanning electron microscope (SEM) after a 35-day treatment. RESULTS: Results revealed that the isolated cells were UC-MSCs, because they were positive for CD44 and negative for CD34 surface markers, and the cells were differentiated into adipocytes and osteoblasts. Imaging technology showed that as treatment time increased, the high signal in the MRI T2-weighted images decreased, the echo-free space in B ultrasonography images disappeared basically, and the continuous linear hypoechoic region at the trochlear sulcus thickened. On X-ray images, the serrate defect at the ventral cortex of the patella improved, and the low-density gap of the ventral patella and trochlear crest gradually increased in the treated group. On the contrary, the high signal in the MRI T2-weighted images and the echo-free space in B ultrasonography images still increased after a 14-day treatment in the untreated control group, and the linear hypoechoic region was discontinuous. On the X-ray images, there was no improvement in the serrate defect of the ventral cortex of the patella. Results for inflammatory factors showed that the blood levels of IL-6, IL-7, and TNF-α of the untreated control group were significantly higher than those of the treated group (P < 0.05) 7-14 days posttreatment. The result of SEM showed that the cartilage neogenesis in the treated group had visible neonatal tissue and more irregular arrangement of new tissue fibers than that of the untreated control group. Furthermore, more vacuoles but without collagen fibers were observed in the cartilage of the untreated control group, and the thickness of the neogenetic cartilage in the treated group (65.13 ± 5.29, 65.30 ± 5.83) and the untreated control group (34.27 ± 5.42) showed a significant difference (P < 0.01). CONCLUSION: Significantly higher improvement in cartilage neogenesis and recovery was observed in the treated group compared to the untreated control group. The joint fluid and the inflammatory response in the treated group decreased. Moreover, improved recovery in the neogenetic cartilage, damaged skin fascia, and muscle tissue around the joints was more significant in the treated group than in the untreated control group. In conclusion, canine UC-MSCs promote the repair of cartilage and patella injury in osteoarthritis, improve the healing of the surrounding tissues, and reduce the inflammatory response.

5.
Stem Cells Int ; 2016: 4069543, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003832

RESUMO

Chromodomain helicase/ATPase DNA binding protein 1-like gene (Chd1l) participates in chromatin-dependent processes, including transcriptional activation and DNA repair. In this study, we have found for the first time that Chd1l is mainly expressed in the testicular tissues of prepubertal and adult mice and colocalized with PLZF, OCT4, and GFRα1 in the neonatal mouse testis and THY1+ undifferentiated spermatogonia or spermatogonial stem cells (SSCs). Knockdown of endogenous Chd1l in cultured mouse undifferentiated SSCs inhibited the expression levels of Oct4, Plzf, Gfrα1, and Pcna genes, suppressed SSC colony formation, and reduced BrdU incorporation, while increasing SSC apoptosis. Moreover, the Chd1l gene expression is activated by GDNF in the cultured mouse SSCs, and the GDNF signaling pathway was modulated by endogenous levels of Chd1l; as demonstrated by the gene expression levels of GDNF, inducible transcripts Etv5, Bcl6b, Pou3f, and Lhx1, but not that of GDNF-independent gene, Taf4b, were significantly downregulated by Chd1l knockdown in mouse SSCs. Taken together, this study provides the first evidence to support the notion that Chd1l is an intrinsic and novel regulator for SSC survival and self-renewal, and it exerts such regulation at least partially through a GDNF signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA