Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(9): 7920-7930, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376943

RESUMO

The transport properties of high-temperature silicate melts control magma flow and are crucial for a wide variety of industrial processes involving minerals. However, anomalous melt properties have been observed that cannot be explained by the traditional polymerization degree theory, which was derived based on quenched melts. Ab initio molecular dynamics (AIMD) simulations were conducted to investigate the flow mechanism of CaO-Al2O3-SiO2 melts under high temperature atmospheric conditions. By analyzing the dynamic structure of melted silicates and employing molecular orbital theory, we gained a fundamental understanding of the flow mechanism from a chemistry perspective. Transient tri-coordinated oxygen (TO) bonded with one Si and two Al atoms (SiOAl2) was found to be a pivotal intermediate in melt flow and atomic diffusion processes. Frequent chemical transition between TO in SiOAl2 and bridging oxygen (BO) dominated the fluidity of melted silicates. The presence of such transitions is facilitated by the unstable nature of [SiAlO2] 4-membered rings, which are susceptible to instability due to the intense repulsion between the O 2p lone pairs and the excessively bent O-Al-O angle. Additionally, the density of SiOAl2 type TO motif could serve as an indicator to determine the relationship between structure and fluidity. Our results challenge the traditional polymerization degree theory and suggest the need to reassess high-temperature liquid properties that govern processes in the Earth and industry by monitoring transient motifs.

2.
J Environ Manage ; 370: 122750, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39362160

RESUMO

Melting treatment has emerged as a promising technology for managing municipal solid waste incineration (MSWI) fly ash owing to its advantageous features of effective detoxification and volume reduction. The melting treatment of MSWI fly ash involves the immobilization of heavy metals by crystals and liquid phase. Herein, the immobilization mechanism of heavy metals (Cu, Pb and Cd) by the crystals and the liquid phase was investigated using melting experiments, thermodynamic calculations and density functional theory (DFT) calculations. Results demonstrate that the immobilization of heavy metals is influenced by a combination of factors: the reaction of heavy metals, physical encapsulation ability of the liquid phase and chemical fixation ability of both the crystals and the liquid phase. An increase in the content of SiO2 and Al2O3 promotes the conversion of heavy metals oxides into heavy metals chlorides. Furthermore, an increase in the content and polymerization degree of the liquid phase facilitates the physical encapsulation of heavy metals chlorides. The chemical fixation ability of the crystals and the liquid phase differs for Cu and Pb, while Cd cannot be immobilized through chemical fixation. To enhance the immobilization of heavy metals during melting treatment, the chemical composition of MSWI fly ash should be adjusted within the anorthite region of the ternary phase diagram. This study provides valuable insights into the immobilization mechanism of heavy metals by the crystals and the liquid phase during the melting treatment of MSWI fly ash.

3.
Waste Manag ; 166: 203-210, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182253

RESUMO

Thermal treatment is a promising treatment technology of municipal solid waste incineration (MSWI) fly ash because of its detoxication and volume reduction. However, the relationship between immobilization of heavy metals and mineral transformation during thermal treatment remains unclear. In this study, the immobilization mechanism of Zn during thermal treatment process of MSWI fly ash was investigated by experiment and calculation. The results show that addition of SiO2 facilitates transition of dominant minerals from melilite to anorthite during sintering, increases liquid content during melting and improves liquid polymerization degree during vitrification. ZnCl2 tends to be physically encapsulated by liquid phase, and ZnO is mainly chemically fixed into minerals at high temperature. Increase in both liquid content and liquid polymerization degree favors the physical encapsulation of ZnCl2. The decreasing order of chemical fixation ability of minerals to ZnO is spinel > melilite > liquid > anorthite. To better immobilize Zn during sintering and vitrification process chemical composition of MSWI fly ash should be located in melilite and anorthite primary phases of pseudo-ternary phase diagram, respectively. The results are helpful to understand immobilization mechanism of heavy metals and avoid volatilization of heavy metals during thermal treatment process of MSWI fly ash.


Assuntos
Metais Pesados , Eliminação de Resíduos , Óxido de Zinco , Incineração , Cinza de Carvão , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Material Particulado/química , Dióxido de Silício , Carbono/química , Minerais , Metais Pesados/análise , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA