Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Anim Ecol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773788

RESUMO

Testing for intraspecific variation for host tolerance or resistance in wild populations is important for informing conservation decisions about captive breeding, translocation, and disease treatment. Here, we test the importance of tolerance and resistance in multiple populations of boreal toads (Anaxyrus boreas boreas) against Batrachochytrium dendrobatidis (Bd), the amphibian fungal pathogen responsible for the greatest host biodiversity loss due to disease. Boreal toads have severely declined in Colorado (CO) due to Bd, but toad populations challenged with Bd in western Wyoming (WY) appear to be less affected. We used a common garden infection experiment to expose post-metamorphic toads sourced from four populations (2 in CO and 2 in WY) to Bd and monitored changes in mass, pathogen burden and survival for 8 weeks. We used a multi-state modelling approach to estimate weekly survival and transition probabilities between infected and cleared states, reflecting a dynamic infection process that traditional approaches fail to capture. We found that WY boreal toads are more tolerant to Bd infection with higher survival probabilities than those in CO when infected with identical pathogen burdens. WY toads also appeared more resistant to Bd with a higher probability of infection clearance and an average of 5 days longer to reach peak infection burdens. Our results demonstrate strong intraspecific differences in tolerance and resistance that likely contribute to why population declines vary regionally across this species. Our multi-state framework allowed us to gain inference on typically hidden disease processes when testing for host tolerance or resistance. Our findings demonstrate that describing an entire host species as 'tolerant' or 'resistant' (or lack thereof) is unwise without testing for intraspecific variation.

2.
Ecol Appl ; 33(1): e2726, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053865

RESUMO

We conducted a range-wide investigation of the dynamics of site-level reproductive rate of northern spotted owls using survey data from 11 study areas across the subspecies geographic range collected during 1993-2018. Our analytical approach accounted for imperfect detection of owl pairs and misclassification of successful reproduction (i.e., at least one young fledged) and contributed further insights into northern spotted owl population ecology and dynamics. Both nondetection and state misclassification were important, especially because factors affecting these sources of error also affected focal ecological parameters. Annual probabilities of site occupancy were greatest at sites with successful reproduction in the previous year and lowest for sites not occupied by a pair in the previous year. Site-specific occupancy transition probabilities declined over time and were negatively affected by barred owl presence. Overall, the site-specific probability of successful reproduction showed substantial year-to-year fluctuations and was similar for occupied sites that did or did not experience successful reproduction the previous year. Site-specific probabilities for successful reproduction were very small for sites that were unoccupied the previous year. Barred owl presence negatively affected the probability of successful reproduction by northern spotted owls in Washington and California, as predicted, but the effect in Oregon was mixed. The proportions of sites occupied by northern spotted owl pairs showed steep, near-monotonic declines over the study period, with all study areas showing the lowest observed levels of occupancy to date. If trends continue it is likely that northern spotted owls will become extirpated throughout large portions of their range in the coming decades.


Assuntos
Estrigiformes , Animais , Probabilidade , Reprodução , Oregon , Washington
3.
Ecol Appl ; 29(1): e01825, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403314

RESUMO

Discerning the determinants of species occurrence across landscapes is fundamental to their conservation and management. In spatially and climatologically complex landscapes, explaining the dynamics of occurrence can lead to improved understanding of short- vs. long-term trends and offer novel insight on local vs. regional change. We examined the changes in occupancy for two species of anurans with different life histories over a decade using hundreds of wetland sites in Yellowstone and Grand Teton National Parks. To account for the joint dynamics of wetland drying and amphibian breeding, we adopted a multistate occupancy model as a means to investigate mechanistic relationships of observed occurrence patterns with climatological drivers of wetland hydrologic variability. This approach allowed us to decompose occupancy dynamics into habitat changes caused by wetland drying and amphibian breeding activity, conditional on available water and previous breeding state. Over our 10-yr time series, we observed considerable variability in climate drivers and the proportion of dry wetlands. Boreal chorus frogs (Pseudacris maculata) were more responsive to changes in wetland inundation status than Columbia spotted frogs (Rana luteiventris), as indicated by higher breeding colonization probabilities under favorable (wet) conditions. Both species had high probabilities of breeding persistence in permanently inundated wetlands with prior breeding. Despite the absence of multi-year drought in our time series, mechanistic relationships described here offer insights on how future climate variation may result in reduced and/or shifted occurrence patterns for pond-breeding anurans in the Greater Yellowstone Area. Further, our modeling approach may prove valuable in evaluating determinants of occurrence for other species that are dependent on wetlands or other dynamic habitats.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Animais , Anuros , Cruzamento , Ecossistema
4.
Ecol Appl ; 29(3): e01861, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30835921

RESUMO

Slow ecological processes challenge conservation. Short-term variability can obscure the importance of slower processes that may ultimately determine the state of a system. Furthermore, management actions with slow responses can be hard to justify. One response to slow processes is to explicitly concentrate analysis on state dynamics. Here, we focus on identifying drivers of Northern Spotted Owl (Strix occidentalis caurina) territorial occupancy dynamics across 11 study areas spanning their geographic range and forecasting response to potential management actions. Competition with Barred Owls (Strix varia) has increased Spotted Owl territory extinction probabilities across all study areas and driven recent declines in Spotted Owl populations. Without management intervention, the Northern Spotted Owl subspecies will be extirpated from parts of its current range within decades. In the short term, Barred Owl removal can be effective. Over longer time spans, however, maintaining or improving habitat conditions can help promote the persistence of northern spotted owl populations. In most study areas, habitat effects on expected Northern Spotted Owl territorial occupancy are actually greater than the effects of competition from Barred Owls. This study suggests how intensive management actions (removal of a competitor) with rapid results can complement a slower management action (i.e., promoting forest succession).


Assuntos
Estrigiformes , Animais , Conservação dos Recursos Naturais , Coleta de Dados , Ecossistema , Florestas
5.
Ecol Appl ; 28(4): 926-937, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29430754

RESUMO

Emerging infectious diseases are an increasingly common threat to wildlife. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease that has been linked to amphibian declines around the world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our ability to identify which factors are associated with variation in population susceptibility and to develop effective in situ disease management. Declines of boreal toads (Anaxyrus boreas boreas) in the southern Rocky Mountains are largely attributed to chytridiomycosis but variation exists in local extinction of boreal toads across this metapopulation. Using a large-scale historic data set, we explored several potential factors influencing disease dynamics in the boreal toad-Bd system: geographic isolation of populations, amphibian community richness, elevational differences, and habitat permanence. We found evidence that boreal toad extinction risk was lowest at high elevations where temperatures may be suboptimal for Bd growth and where small boreal toad populations may be below the threshold needed for efficient pathogen transmission. In addition, boreal toads were more likely to recolonize high elevation sites after local extinction, again suggesting that high elevations may provide refuge from disease for boreal toads. We illustrate a modeling framework that will be useful to natural resource managers striving to make decisions in amphibian-Bd systems. Our data suggest that in the southern Rocky Mountains high elevation sites should be prioritized for conservation initiatives like reintroductions.


Assuntos
Altitude , Bufonidae/microbiologia , Quitridiomicetos/fisiologia , Interações Hospedeiro-Patógeno , Animais , Modelos Biológicos , Dinâmica Populacional
6.
Oecologia ; 188(1): 319-330, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29860635

RESUMO

Understanding the ecosystem-level persistence of pathogens is essential for predicting and measuring host-pathogen dynamics. However, this process is often masked, in part due to a reliance on host-based pathogen detection methods. The amphibian pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal) are pathogens of global conservation concern. Despite having free-living life stages, little is known about the distribution and persistence of these pathogens outside of their amphibian hosts. We combine historic amphibian monitoring data with contemporary host- and environment-based pathogen detection data to obtain estimates of Bd occurrence independent of amphibian host distributions. We also evaluate differences in filter- and swab-based detection probability and assess inferential differences arising from using different decision criteria used to classify samples as positive or negative. Water filtration-based detection probabilities were lower than those from swabs but were > 10%, and swab-based detection probabilities varied seasonally, declining in the early fall. The decision criterion used to classify samples as positive or negative was important; using a more liberal criterion yielded higher estimates of Bd occurrence than when a conservative criterion was used. Different covariates were important when using the liberal or conservative criterion in modeling Bd detection. We found evidence of long-term Bd persistence for several years after an amphibian host species of conservation concern, the boreal toad (Anaxyrus boreas boreas), was last detected. Our work provides evidence of long-term Bd persistence in the ecosystem, and underscores the importance of environmental samples for understanding and mitigating disease-related threats to amphibian biodiversity.


Assuntos
Quitridiomicetos , Ecossistema , Animais , Biodiversidade , Bufonidae , Especificidade de Hospedeiro
7.
Ecology ; 98(11): 2979, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28857166

RESUMO

Our understanding of mammal ecology has always been hindered by the difficulties of observing species in closed tropical forests. Camera trapping has become a major advance for monitoring terrestrial mammals in biodiversity rich ecosystems. Here we compiled one of the largest datasets of inventories of terrestrial mammal communities for the Neotropical region based on camera trapping studies. The dataset comprises 170 surveys of medium to large terrestrial mammals using camera traps conducted in 144 areas by 74 studies, covering six vegetation types of tropical and subtropical Atlantic Forest of South America (Brazil and Argentina), and present data on species composition and richness. The complete dataset comprises 53,438 independent records of 83 species of mammals, includes 10 species of marsupials, 15 rodents, 20 carnivores, eight ungulates and six armadillos. Species richness averaged 13 species (±6.07 SD) per site. Only six species occurred in more than 50% of the sites: the domestic dog Canis familiaris, crab-eating fox Cerdocyon thous, tayra Eira barbara, south American coati Nasua nasua, crab-eating raccoon Procyon cancrivorus and the nine-banded armadillo Dasypus novemcinctus. The information contained in this dataset can be used to understand macroecological patterns of biodiversity, community, and population structure, but also to evaluate the ecological consequences of fragmentation, defaunation, and trophic interactions.


Assuntos
Biodiversidade , Florestas , Mamíferos/fisiologia , Animais , Argentina , Brasil , Cães , Ecossistema
8.
Conserv Biol ; 30(3): 649-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26400445

RESUMO

Tiger (Panthera tigris) conservation efforts in Asia are focused on protected areas embedded in human-dominated landscapes. A system of protected areas is an effective conservation strategy for many endangered species if the network is large enough to support stable metapopulations. The long-term conservation of tigers requires that the species be able to meet some of its life-history needs beyond the boundaries of small protected areas and within the working landscape, including multiple-use forests with logging and high human use. However, understanding of factors that promote or limit the occurrence of tigers in working landscapes is incomplete. We assessed the relative influence of protection status, prey occurrence, extent of grasslands, intensity of human use, and patch connectivity on tiger occurrence in the 5400 km(2) Central Terai Landscape of India, adjacent to Nepal. Two observer teams independently surveyed 1009 km of forest trails and water courses distributed across 60 166-km(2) cells. In each cell, the teams recorded detection of tiger signs along evenly spaced trail segments. We used occupancy models that permitted multiscale analysis of spatially correlated data to estimate cell-scale occupancy and segment-scale habitat use by tigers as a function of management and environmental covariates. Prey availability and habitat quality, rather than protected-area designation, influenced tiger occupancy. Tiger occupancy was low in some protected areas in India that were connected to extensive areas of tiger habitat in Nepal, which brings into question the efficacy of current protection and management strategies in both India and Nepal. At a finer spatial scale, tiger habitat use was high in trail segments associated with abundant prey and large grasslands, but it declined as human and livestock use increased. We speculate that riparian grasslands may provide tigers with critical refugia from human activity in the daytime and thereby promote tiger occurrence in some multiple-use forests. Restrictions on human-use in high-quality tiger habitat in multiple-use forests may complement existing protected areas and collectively promote the persistence of tiger populations in working landscapes.


Assuntos
Conservação dos Recursos Naturais , Tigres , Animais , Ásia , Ecossistema , Humanos , Índia , Nepal
9.
Ecol Appl ; 25(7): 1880-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26591454

RESUMO

Urbanization is a primary driver of landscape conversion, with far-reaching effects on landscape pattern and process, particularly related to the population characteristics of animals. Urbanization can alter animal movement and habitat quality, both of which can influence population abundance and persistence. We evaluated three important population characteristics (population density, site occupancy, and species detection probability) of a medium-sized and a large carnivore across varying levels of urbanization. Specifically, we studied bobcat and puma populations across wildland, exurban development, and wildland-urban interface (WUI) sampling grids to test hypotheses evaluating how urbanization affects wild felid populations and their prey. Exurban development appeared to have a greater impact on felid populations than did habitat adjacent to a major urban area (i.e., WUI); estimates of population density for both bobcats and pumas were lower in areas of exurban development compared to wildland areas, whereas population density was similar between WUI and wildland habitat. Bobcats and pumas were less likely to be detected in habitat as the amount of human disturbance associated with residential development increased at a site, which was potentially related to reduced habitat quality resulting from urbanization. However, occupancy of both felids was similar between grids in both study areas, indicating that this population metric was less sensitive than density. At the scale of the sampling grid, detection probability for bobcats in urbanized habitat was greater than in wildland areas, potentially due to restrictive movement corridors and funneling of animal movements in landscapes influenced by urbanization. Occupancy of important felid prey (cottontail rabbits and mule deer) was similar across levels of urbanization, although elk occupancy was lower in urbanized areas. Our study indicates that the conservation of medium- and large-sized felids associated with urbanization likely will be most successful if large areas of wildland habitat are maintained, even in close proximity to urban areas, and wildland habitat is not converted to low-density residential development.


Assuntos
Lynx/fisiologia , Puma/fisiologia , Urbanização , Sistemas de Identificação Animal , Animais , Animais Selvagens , Colorado , Feminino , Masculino , Modelos Biológicos , Densidade Demográfica
10.
Ecol Appl ; 24(5): 927-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25154087

RESUMO

The reintroduction of threatened and endangered species is now a common method for reestablishing populations. Typically, a fundamental objective of reintroduction is to establish a self-sustaining population. Estimation of demographic parameters in reintroduced populations is critical, as these estimates serve multiple purposes. First, they support evaluation of progress toward the fundamental objective via construction of population viability analyses (PVAs) to predict metrics such as probability of persistence. Second, PVAs can be expanded to support evaluation of management actions, via management modeling. Third, the estimates themselves can support evaluation of the demographic performance of the reintroduced population (e.g., via comparison with wild populations). For each of these purposes, thorough treatment of uncertainties in the estimates is critical. Recently developed statistical methods (namely, hierarchical Bayesian implementations of state-space models) allow for effective integration of different types of uncertainty in estimation. We undertook a demographic estimation effort for a reintroduced population of endangered Whooping Cranes with the purpose of ultimately developing a Bayesian PVA for determining progress toward establishing a self-sustaining population, and for evaluating potential management actions via a Bayesian PVA-based management model. We evaluated individual and temporal variation in demographic parameters based upon a multi-state, mark-recapture model. We found that survival was relatively high across time and varied little by sex. There was some indication that survival varied by release method. Survival was similar to that observed in the wild population. Although overall reproduction in this reintroduced population is poor, birds formed social pairs when relatively young, and once a bird was in a social pair, it had a nearly 50% chance of nesting the following breeding season. Also, once a bird had nested, it had a high probability of nesting again. These results are encouraging, considering that survival and reproduction have been major challenges in past reintroductions of this species. The demographic estimates developed will support construction of a management model designed to facilitate exploration of management actions of interest, and will provide critical guidance in future planning for this reintroduction. An approach similar to what we describe could be usefully applied to many reintroduced populations.


Assuntos
Aves , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Teorema de Bayes , Demografia , Feminino , Masculino , Dinâmica Populacional
11.
Environ Entomol ; 52(1): 108-118, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36412052

RESUMO

The U.S. Fish and Wildlife Service developed national guidelines to track species recovery of the endangered rusty patched bumble bee [Bombus affinis Cresson (Hymenoptera: Apidae)] and to investigate changes in species occupancy across space and time. As with other native bee monitoring efforts, managers have specifically acknowledged the need to address species detection uncertainty and determine the sampling effort required to infer species absence within sites. We used single-season, single-species occupancy models fit to field data collected in four states to estimate imperfect detection of B. affinis and to determine the survey effort required to achieve high confidence of species detection. Our analysis revealed a precipitous, seasonal, decline in B. affinis detection probability throughout the July through September sampling window in 2021. We estimated that six, 30-min surveys conducted in early July are required to achieve a 95% cumulative detection probability, whereas >10 surveys would be required in early August to achieve the same level of confidence. Our analysis also showed B. affinis was less likely to be detected during hot and humid days and at patches of reduced habitat quality. Bombus affinis was frequently observed on Monarda fistulosa (Lamiales: Lamiaceae), followed by [Pycnanthemum virginianum Rob. and Fernald (Lamiales: Lamiaceae)], Eutrochium maculatum Lamont (Asterales: Asteraceae), and Veronicastrum virginicum Farw. (Lamiales: Plantaginaceae). Although our research is focused on B. affinis, it is relevant for monitoring other bumble bees of conservation concern, such as B. occidentalis Greene (Hymenoptera: Apidae) and B. terricola Kirby (Hymenoptera: Apidae) for which monitoring efforts have been recently initiated and occupancy is a variable of conservation interest.


Assuntos
Asteraceae , Himenópteros , Lamiaceae , Magnoliopsida , Abelhas , Animais , Incerteza , Ecossistema
12.
Ecology ; 93(4): 858-67, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22690636

RESUMO

Despite the importance of habitat in determining species distribution and persistence, habitat dynamics are rarely modeled in studies of metapopulations. We used an integrated habitat-occupancy model to simultaneously quantify habitat change, site fidelity, and local colonization and extinction rates for larvae of a suite of Great Plains stream fishes in the Arikaree River, eastern Colorado, USA, across three years. Sites were located along a gradient of flow intermittency and groundwater connectivity. Hydrology varied across years: the first and third being relatively wet and the second dry. Despite hydrologic variation, our results indicated that site suitability was random from one year to the next. Occupancy probabilities were also independent of previous habitat and occupancy state for most species, indicating little site fidelity. Climate and groundwater connectivity were important drivers of local extinction and colonization, but the importance of groundwater differed between periods. Across species, site extinction probabilities were highest during the transition from wet to dry conditions (range: 0.52-0.98), and the effect of groundwater was apparent with higher extinction probabilities for sites not fed by groundwater. Colonization probabilities during this period were relatively low for both previously dry sites (range: 0.02-0.38) and previously wet sites (range: 0.02-0.43). In contrast, no sites dried or remained dry during the transition from dry to wet conditions, yielding lower but still substantial extinction probabilities (range: 0.16-0.63) and higher colonization probabilities (range: 0.06-0.86), with little difference among sites with and without groundwater. This approach of jointly modeling both habitat change and species occupancy will likely be useful to incorporate effects of dynamic habitat on metapopulation processes and to better inform appropriate conservation actions.


Assuntos
Ecossistema , Extinção Biológica , Peixes/classificação , Peixes/fisiologia , Rios , Animais , Reprodução , Estados Unidos
13.
Ecol Appl ; 22(5): 1665-74, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22908721

RESUMO

False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, who recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors, and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI:--46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%;--3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.


Assuntos
Anuros/classificação , Vocalização Animal/classificação , Animais , Audição , Variações Dependentes do Observador , Densidade Demográfica , Especificidade da Espécie , Gravação em Fita
14.
Conserv Biol ; 26(3): 432-41, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22594594

RESUMO

Monitoring the population trends of multiple animal species at a landscape scale is prohibitively expensive. However, advances in survey design, statistical methods, and the ability to estimate species presence on the basis of detection-nondetection data have greatly increased the feasibility of species-level monitoring. For example, recent advances in monitoring make use of detection-nondetection data that are relatively inexpensive to acquire, historical survey data, and new techniques in genetic evaluation. The ability to use indirect measures of presence for some species greatly increases monitoring efficiency and reduces survey costs. After adjusting for false absences, the proportion of sample units in a landscape where a species is detected (occupancy) is a logical state variable to monitor. Occupancy monitoring can be based on real-time observation of a species at a survey site or on evidence that the species was at the survey location sometime in the recent past. Temporal and spatial patterns in occupancy data are related to changes in animal abundance and provide insights into the probability of a species' persistence. However, even with the efficiencies gained when occupancy is the monitored state variable, the task of species-level monitoring remains daunting due to the large number of species. We propose that a small number of species be monitored on the basis of specific management objectives, their functional role in an ecosystem, their sensitivity to environmental changes likely to occur in the area, or their conservation importance.


Assuntos
Biota , Conservação dos Recursos Naturais/métodos , Ecossistema , Conservação dos Recursos Naturais/economia , Extinção Biológica , Modelos Biológicos , Densidade Demográfica , Especificidade da Espécie
15.
Mov Ecol ; 10(1): 2, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033211

RESUMO

BACKGROUND: Invasive reptiles pose a serious threat to global biodiversity, but early detection of individuals in an incipient population is often hindered by their cryptic nature, sporadic movements, and variation among individuals. Little is known about the mechanisms that affect the movement of these species, which limits our understanding of their dispersal. Our aim was to determine whether translocation or small-scale landscape features affect movement patterns of brown treesnakes (Boiga irregularis), a destructive invasive predator on the island of Guam. METHODS: We conducted a field experiment to compare the movements of resident (control) snakes to those of snakes translocated from forests and urban areas into new urban habitats. We developed a Bayesian hierarchical model to analyze snake movement mechanisms and account for attributes unique to invasive reptiles by incorporating multiple behavioral states and individual heterogeneity in movement parameters. RESULTS: We did not observe strong differences in mechanistic movement parameters (turning angle or step length) among experimental treatment groups. We found some evidence that translocated snakes from both forests and urban areas made longer movements than resident snakes, but variation among individuals within treatment groups weakened this effect. Snakes translocated from forests moved more frequently from pavement than those translocated from urban areas. Snakes translocated from urban areas moved less frequently from buildings than resident snakes. Resident snakes had high individual heterogeneity in movement probability. CONCLUSIONS: Our approach to modeling movement improved our understanding of invasive reptile dispersal by allowing us to examine the mechanisms that influence their movement. We also demonstrated the importance of accounting for individual heterogeneity in population-level analyses, especially when management goals involve eradication of an invasive species.

16.
Ecology ; 92(6): 1236-46, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21797152

RESUMO

Species with partial migration, where a portion of a population migrates and the other remains residential, provide the opportunity to evaluate conditions for migration and test mechanisms influencing migratory decisions. We conducted a five-year study of two populations of red-spotted newts (Notophthalmus viridescens), composed of individuals that either remain as residents in the breeding pond over the winter or migrate to the terrestrial habitat. We used multistate mark-recapture methods to (1) test for differences in survival probability between migrants and residents, (2) determine if migrants breed every year or skip opportunities for reproduction, and (3) estimate the frequency of individuals switching migratory tactic. We used estimates of life history parameters from the natural populations in combination with previous experimental work to evaluate processes maintaining partial migration at the population level and to assess mechanisms influencing the decision to migrate. Based on capture-recapture information on over 3000 individuals, we found that newts can switch migratory tactics over their lifetime. We conclude that migrants and residents coexist through conditional asymmetries, with residents having higher fitness and inferior individuals adopting the migrant tactic. We found that newts are more likely to switch from residency to migrating than the reverse and males were more likely to remain as residents. Migration differences between the sexes are likely driven by reproduction benefits of residency for males and high energetic costs of breeding resulting in lower breeding frequencies for females. Environmental conditions also influence partial migration within a population; we found support for density-dependent processes in the pond strongly influencing the probability of migrating. Our work illustrates how migration can be influenced by a complex range of individual and environmental factors and enhances our understanding of the conditions necessary for the evolution and maintenance of partial migration within populations.


Assuntos
Migração Animal , Ecossistema , Modelos Estatísticos , Notophthalmus viridescens , Comportamento Sexual Animal , Animais , Feminino , Masculino , Reprodução , Virginia
17.
Ecology ; 92(2): 408-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21618920

RESUMO

Studies of the distribution of elusive forest wildlife have suffered from the confounding of true presence with the uncertainty of detection. Occupancy modeling, which incorporates probabilities of species detection conditional on presence, is an emerging approach for reducing observation bias. However, the current likelihood modeling framework is restrictive for handling unexplained sources of variation in the response that may occur when there are dependence structures such as smaller sampling units that are nested within larger sampling units. We used multilevel Bayesian occupancy modeling to handle dependence structures and to partition sources of variation in occupancy of sites by terrestrial salamanders (family Plethodontidae) within and surrounding an earlier wildfire in western Oregon, USA. Comparison of model fit favored a spatial N-mixture model that accounted for variation in salamander abundance over models that were based on binary detection/non-detection data. Though catch per unit effort was higher in burned areas than unburned, there was strong support that this pattern was due to a higher probability of capture for individuals in burned plots. Within the burn, the odds of capturing an individual given it was present were 2.06 times the odds outside the burn, reflecting reduced complexity of ground cover in the burn. Ther was weak support that true occupancy was lower within the burned area. While the odds of occupancy in the burn were 0.49 times the odds outside the burn among the five species, the magnitude of variation attributed to the burn was small in comparison to variation attributed to other landscape variables and to unexplained, spatially autocorrelated random variation. While ordinary occupancy models may separate the biological pattern of interest from variation in detection probability when all sources of variation are known, the addition of random effects structures for unexplained sources of variation in occupancy and detection probability may often more appropriately represent levels of uncertainty.


Assuntos
Ecossistema , Incêndios , Modelos Biológicos , Urodelos/fisiologia , Animais , Simulação por Computador , Demografia
18.
Ecol Evol ; 11(21): 14888-14904, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765148

RESUMO

Understanding habitat needs and patch utilization of wild and managed bees has been identified as a national research priority in the United States. We used occupancy models to investigate patterns of bee use across 1030 transects spanning a gradient of floral resource abundance and richness and distance from apiaries in the Prairie Pothole Region (PPR) of the United States. Estimates of transect use by honey bees were nearly 1.0 during our 3.5-month sampling period, suggesting honey bees were nearly ubiquitous across transects. Wild bees more frequently used transects with higher flower richness and more abundant flowers; however, the effect size of the native flower abundance covariate ( ß ^ native  = 3.90 ± 0.65 [1SE]) was four times greater than the non-native flower covariate ( ß ^ n o n - n a t i v e  = 0.99 ± 0.17). We found some evidence that wild bee use was lower at transects near commercial apiaries, but the effect size was imprecise ( ß ^ distance  = 1.4 ± 0.81). Honey bees were more frequently detected during sampling events with more non-native flowers and higher species richness but showed an uncertain relationship with native flower abundance. Of the 4039 honey bee and flower interactions, 85% occurred on non-native flowers, while only 43% of the 738 wild bee observations occurred on non-native flowers. Our study suggests wild bees and honey bees routinely use the same resource patches in the PPR but often visit different flowering plants. The greatest potential for resource overlap between honey bees and wild bees appears to be for non-native flowers in the PPR. Our results are valuable to natural resource managers tasked with supporting habitat for managed and wild pollinators in agroecosystems.

19.
Ecol Lett ; 13(6): 659-74, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20426794

RESUMO

Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals, populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the uncertainty associated with these state assignments remains largely ignored or unaccounted for. We demonstrate how recent developments incorporating observation error through repeated sampling extend quite naturally to hierarchical spatial models of disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain of avian influenza virus in migratory waterfowl and a pathogenic fungus recently implicated in the global loss of amphibian biodiversity are used as motivating examples. Both show that relatively simple modifications to study designs can greatly improve our understanding of complex spatio-temporal disease dynamics by rigorously accounting for uncertainty at each level of the hierarchy.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/microbiologia , Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Ecologia/estatística & dados numéricos , Modelos Estatísticos , Incerteza , Anfíbios/microbiologia , Anfíbios/fisiologia , Doenças dos Animais/virologia , Migração Animal , Animais , Animais Domésticos/fisiologia , Animais Domésticos/virologia , Animais Selvagens/fisiologia , Animais Selvagens/virologia , Anseriformes/virologia , Fungos/patogenicidade , Humanos , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Micoses/epidemiologia , Micoses/microbiologia , Micoses/veterinária
20.
Ecology ; 91(6): 1598-604, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20583702

RESUMO

Multistate mark-recapture models with unobservable states can yield unbiased estimators of survival probabilities in the presence of temporary emigration (i.e., in cases where some individuals are temporarily unavailable for capture). In addition, these models permit the estimation of transition probabilities between states, which may themselves be of interest; for example, when only breeding animals are available for capture. However, parameter redundancy is frequently a problem in these models, yielding biased parameter estimates and influencing model selection. Using numerical methods, we examine complex multistate mark-recapture models involving two observable and two unobservable states. This model structure was motivated by two different biological systems: one involving island-nesting albatross, and another involving pond-breeding amphibians. We found that, while many models are theoretically identifiable given appropriate constraints, obtaining accurate and precise parameter estimates in practice can be difficult. Practitioners should consider ways to increase detection probabilities or adopt robust design sampling in order to improve the properties of estimates obtained from these models. We suggest that investigators interested in using these models explore both theoretical identifiability and possible near-singularity for likely parameter values using a combination of available methods.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Viés , Demografia , Modelos Estatísticos , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA