RESUMO
The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.
Assuntos
Bancos de Espécimes Biológicos , Neoplasias da Mama , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biomarcadores Farmacológicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Testes Farmacogenômicos , Células Tumorais CultivadasRESUMO
Current evidence suggests that plasma cell-free DNA (cfDNA) is fragmented around a mode of 166 bp. Data supporting this view has been mainly acquired through the analysis of double-stranded cfDNA. The characteristics and diagnostic potential of single-stranded and damaged double-stranded cfDNA in healthy individuals and cancer patients remain unclear. Here, through a combination of high-affinity magnetic bead-based DNA extraction and single-stranded DNA sequencing library preparation (MB-ssDNA), we report the discovery of a large proportion of cfDNA fragments centered at â¼50 bp. We show that these "ultrashort" cfDNA fragments have a greater relative abundance in plasma of healthy individuals (median = 19.1% of all sequenced cfDNA fragments, n = 28) than in plasma of patients with cancer (median = 14.2%, n = 21, P < 0.0001). The ultrashort cfDNA fragments map to accessible chromatin regions of blood cells, particularly in promoter regions with the potential to adopt G-quadruplex (G4) DNA secondary structures. G4-positive promoter chromatin accessibility is significantly enriched in ultrashort plasma cfDNA fragments from healthy individuals relative to patients with cancers (P < 0.0001), in whom G4-cfDNA enrichment is inversely associated with copy number aberration-inferred tumor fractions. Our findings redraw the landscape of cfDNA fragmentation by identifying and characterizing a novel population of ultrashort plasma cfDNA fragments. Sequencing of MB-ssDNA libraries could facilitate the characterization of gene regulatory regions and DNA secondary structures via liquid biopsy. Our data underline the diagnostic potential of ultrashort cfDNA through classification for cancer patients.
Assuntos
Ácidos Nucleicos Livres , Neoplasias , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , DNA/genética , DNA de Cadeia Simples , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência de DNARESUMO
Cell cycle dysregulation is a hallmark of cancer that promotes eccessive cell division. Cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) are key molecules in the G1-to-S phase cell cycle transition and are crucial for the onset, survival, and progression of breast cancer (BC). Small-molecule CDK4/CDK6 inhibitors (CDK4/6i) block phosphorylation of tumor suppressor Rb and thus restrain susceptible BC cells in G1 phase. Three CDK4/6i are approved for the first-line treatment of patients with advanced/metastatic hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) BC in combination with endocrine therapy (ET). Though this has improved the clinical outcomes for survival of BC patients, there is no established standard next-line treatment to tackle drug resistance. Recent studies suggest that CDK4/6i can modulate other distinct effects in both BC and breast stromal compartments, which may provide new insights into aspects of their clinical activity. This review describes the biochemistry of the CDK4/6-Rb-E2F pathway in HR+ BC, then discusses how CDK4/6i can trigger other effects in BC/breast stromal compartments, and finally outlines the mechanisms of CDK4/6i resistance that have emerged in recent preclinical studies and clinical cohorts, emphasizing the impact of these findings on novel therapeutic opportunities in BC.
Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Humanos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Ciclo Celular/efeitos dos fármacos , Receptores de Estrogênio/metabolismoRESUMO
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Neoplasias/tratamento farmacológico , Neoplasias/genéticaRESUMO
Our purpose is to investigate the feasibility of imaging tumor metabolism in breast cancer patients using 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool. Treatment-naïve breast cancer patients were recruited: four triple-negative grade 3 cancers; two invasive ductal carcinomas that were estrogen and progesterone receptor-positive (ER/PR+) and HER2/neu-negative (HER2-), one grade 2 and one grade 3; and one grade 2 ER/PR+ HER2- invasive lobular carcinoma (ILC). Dynamic 13C MRSI was performed following injection of hyperpolarized [1-13C]pyruvate. Expression of lactate dehydrogenase A (LDHA), which catalyzes 13C label exchange between pyruvate and lactate, hypoxia-inducible factor-1 (HIF1α), and the monocarboxylate transporters MCT1 and MCT4 were quantified using immunohistochemistry and RNA sequencing. We have demonstrated the feasibility and safety of hyperpolarized 13C MRI in early breast cancer. Both intertumoral and intratumoral heterogeneity of the hyperpolarized pyruvate and lactate signals were observed. The lactate-to-pyruvate signal ratio (LAC/PYR) ranged from 0.021 to 0.473 across the tumor subtypes (mean ± SD: 0.145 ± 0.164), and a lactate signal was observed in all of the grade 3 tumors. The LAC/PYR was significantly correlated with tumor volume (R = 0.903, P = 0.005) and MCT 1 (R = 0.85, P = 0.032) and HIF1α expression (R = 0.83, P = 0.043). Imaging of hyperpolarized [1-13C]pyruvate metabolism in breast cancer is feasible and demonstrated significant intertumoral and intratumoral metabolic heterogeneity, where lactate labeling correlated with MCT1 expression and hypoxia.
Assuntos
Neoplasias da Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Imageamento por Ressonância Magnética/instrumentação , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Simportadores/genética , Simportadores/metabolismoRESUMO
BACKGROUND: Circulating tumour DNA (ctDNA) testing might provide a current assessment of the genomic profile of advanced cancer, without the need to repeat tumour biopsy. We aimed to assess the accuracy of ctDNA testing in advanced breast cancer and the ability of ctDNA testing to select patients for mutation-directed therapy. METHODS: We did an open-label, multicohort, phase 2a, platform trial of ctDNA testing in 18 UK hospitals. Participants were women (aged ≥18 years) with histologically confirmed advanced breast cancer and an Eastern Cooperative Oncology Group performance status 0-2. Patients had completed at least one previous line of treatment for advanced breast cancer or relapsed within 12 months of neoadjuvant or adjuvant chemotherapy. Patients were recruited into four parallel treatment cohorts matched to mutations identified in ctDNA: cohort A comprised patients with ESR1 mutations (treated with intramuscular extended-dose fulvestrant 500 mg); cohort B comprised patients with HER2 mutations (treated with oral neratinib 240 mg, and if oestrogen receptor-positive with intramuscular standard-dose fulvestrant); cohort C comprised patients with AKT1 mutations and oestrogen receptor-positive cancer (treated with oral capivasertib 400 mg plus intramuscular standard-dose fulvestrant); and cohort D comprised patients with AKT1 mutations and oestrogen receptor-negative cancer or PTEN mutation (treated with oral capivasertib 480 mg). Each cohort had a primary endpoint of confirmed objective response rate. For cohort A, 13 or more responses among 78 evaluable patients were required to infer activity and three or more among 16 were required for cohorts B, C, and D. Recruitment to all cohorts is complete and long-term follow-up is ongoing. This trial is registered with ClinicalTrials.gov, NCT03182634; the European Clinical Trials database, EudraCT2015-003735-36; and the ISRCTN registry, ISRCTN16945804. FINDINGS: Between Dec 21, 2016, and April 26, 2019, 1051 patients registered for the study, with ctDNA results available for 1034 patients. Agreement between ctDNA digital PCR and targeted sequencing was 96-99% (n=800, kappa 0·89-0·93). Sensitivity of digital PCR ctDNA testing for mutations identified in tissue sequencing was 93% (95% CI 83-98) overall and 98% (87-100) with contemporaneous biopsies. In all cohorts, combined median follow-up was 14·4 months (IQR 7·0-23·7). Cohorts B and C met or exceeded the target number of responses, with five (25% [95% CI 9-49]) of 20 patients in cohort B and four (22% [6-48]) of 18 patients in cohort C having a response. Cohorts A and D did not reach the target number of responses, with six (8% [95% CI 3-17]) of 74 in cohort A and two (11% [1-33]) of 19 patients in cohort D having a response. The most common grade 3-4 adverse events were raised gamma-glutamyltransferase (13 [16%] of 80 patients; cohort A); diarrhoea (four [25%] of 20; cohort B); fatigue (four [22%] of 18; cohort C); and rash (five [26%] of 19; cohort D). 17 serious adverse reactions occurred in 11 patients, and there was one treatment-related death caused by grade 4 dyspnoea (in cohort C). INTERPRETATION: ctDNA testing offers accurate, rapid genotyping that enables the selection of mutation-directed therapies for patients with breast cancer, with sufficient clinical validity for adoption into routine clinical practice. Our results demonstrate clinically relevant activity of targeted therapies against rare HER2 and AKT1 mutations, confirming these mutations could be targetable for breast cancer treatment. FUNDING: Cancer Research UK, AstraZeneca, and Puma Biotechnology.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , DNA Tumoral Circulante/sangue , Terapia de Alvo Molecular , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Feminino , Fulvestranto/uso terapêutico , Genótipo , Humanos , Pessoa de Meia-Idade , Mutação , PTEN Fosfo-Hidrolase/genética , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Quinolinas/uso terapêutico , Receptor ErbB-2/genética , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Resultado do TratamentoRESUMO
BACKGROUND: Epertinib (S-222611) is a potent reversible inhibitor of HER2, EGFR and HER4. This trial evaluated the safety, tolerability, pharmacokinetics and antitumour activity of daily oral epertinib combined with trastuzumab (arm A), with trastuzumab plus vinorelbine (arm B) or with trastuzumab plus capecitabine (arm C), in patients with HER2-positive metastatic breast cancer (MBC). METHODS: Eligible patients, with or without brain metastases, had received prior HER2-directed therapy. A dose-escalation phase determined the tolerability of each combination and established a dose for further study. Further, patients were recruited to expansion cohorts in each of the 3 arms to further explore efficacy and safety. RESULTS: The recommended doses of epertinib were 600 mg, 200 mg and 400 mg in arms A, B and C, respectively. The most frequent grade 3/4 adverse event (AE) was diarrhoea in all arms, which was manageable with medical intervention and dose modification. The objective response rate (complete response [CR] plus partial response [PR]) in heavily pre-treated HER2-positive MBC patients at the recommended doses of epertinib combined with trastuzumab was 67% (N = 9), with trastuzumab plus vinorelbine was 0% (N = 5) and with trastuzumab plus capecitabine was 56% (N = 9). Notably, 4 of 6 patients previously treated with T-DM1 responded in the arm A expansion cohort (epertinib plus trastuzumab). In the arm C expansion cohort (epertinib plus trastuzumab plus capecitabine), 4 of 7 patients responded despite previous exposure to capecitabine. Measurable regression of brain metastases was observed in patients with CNS target lesions treated in both arms A and C. CONCLUSION: We observed safety, tolerability and encouraging antitumour activity of epertinib combined with trastuzumab, or with trastuzumab plus capecitabine. This supports further evaluation of these combinations in patients with pre-treated HER2-positive MBC, with or without brain metastases. TRIAL REGISTRATION: EudraCT Number: 2013-003894-87; registered 09-September-2013.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quinazolinas/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Capecitabina/administração & dosagem , Capecitabina/efeitos adversos , Capecitabina/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Quinazolinas/administração & dosagem , Quinazolinas/efeitos adversos , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/administração & dosagem , Trastuzumab/efeitos adversos , Resultado do Tratamento , Vinorelbina/administração & dosagem , Vinorelbina/efeitos adversos , Vinorelbina/uso terapêuticoRESUMO
Restoration of the American chestnut (Castanea dentata) is underway using backcross breeding that confers chestnut blight disease resistance from Asian chestnuts (most often Castanea mollissima) to the susceptible host. Successful restoration will depend on blight resistance and performance of hybrid seedlings, which can be impacted by below-ground fungal communities. We compared fungal communities in roots and rhizospheres (rhizobiomes) of nursery-grown, 1-year-old chestnut seedlings from different genetic families of American chestnut, Chinese chestnut, and hybrids from backcross breeding generations as well as those present in the nursery soil. We specifically focused on the ectomycorrhizal (EcM) fungi that may facilitate host performance in the nursery and aid in seedling establishment after outplanting. Seedling rhizobiomes and nursery soil communities were distinct and seedlings recruited heterogeneous communities from shared nursery soil. The rhizobiomes included EcM fungi as well as endophytes, putative pathogens, and likely saprobes, but their relative proportions varied widely within and among the chestnut families. Notably, hybrid seedlings that hosted few EcM fungi hosted a large proportion of potential pathogens and endophytes, with possible consequences in outplanting success. Our data show that chestnut seedlings recruit divergent rhizobiomes and depart nurseries with communities that may facilitate or compromise the seedling performance in the field.
Assuntos
Fagaceae/microbiologia , Fungos/isolamento & purificação , Microbiota , Micorrizas/isolamento & purificação , Doenças das Plantas/imunologia , Biodiversidade , Resistência à Doença , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fagaceae/genética , Fagaceae/imunologia , Fungos/classificação , Fungos/genética , Hibridização Genética , Micorrizas/classificação , Micorrizas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Microbiologia do SoloRESUMO
Powdery mildews (PMs) are important plant pathogens causing widespread damage. Here, we report the first draft genome of Erysiphe pulchra, the causative agent of PM of flowering dogwood, Cornus florida. The assembled genome was 63.5 Mbp and resulted in formation of 19,442 contigs (N50 = 11,686 bp) that contained an estimated 6,860 genes with a genome coverage of 62×. We found 102 candidate secreted effector proteins (CSEPs) in E. pulchra similar to E. necator genes that are potentially involved in disease development. This draft genome is an initial step for understanding the evolutionary history of the PMs and will also provide insight into evolutionary strategies that led to the wide host expansion and environmental adaptations so effectively employed by the PM lineages.
Assuntos
Ascomicetos , Genoma Fúngico , Ascomicetos/genética , Genômica/tendências , Doenças das Plantas/microbiologiaRESUMO
Nitrogen deposition alters forest ecosystems particularly in high elevation, montane habitats where nitrogen deposition is greatest and continues to increase. We collected soils across an elevational (788-1940 m) gradient, encompassing both abiotic (soil chemistry) and biotic (vegetation community) gradients, at eight locations in the southern Appalachian Mountains of southwestern North Carolina and eastern Tennessee. We measured soil chemistry (total N, C, extractable PO4, soil pH, cation exchange capacity [ECEC], percent base saturation [% BS]) and dissected soil fungal communities using ITS2 metabarcode Illumina MiSeq sequencing. Total soil N, C, PO4, % BS, and pH increased with elevation and plateaued at approximately 1400 m, whereas ECEC linearly increased and C/N decreased with elevation. Fungal communities differed among locations and were correlated with all chemical variables, except PO4, whereas OTU richness increased with total N. Several ecological guilds (i.e., ectomycorrhizae, saprotrophs, plant pathogens) differed in abundance among locations; specifically, saprotroph abundance, primarily attributable to genus Mortierella, was positively correlated with elevation. Ectomycorrhizae declined with total N and soil pH and increased with total C and PO4 where plant pathogens increased with total N and decreased with total C. Our results demonstrate significant turnover in taxonomic and functional fungal groups across elevational gradients which facilitate future predictions on forest ecosystem change in the southern Appalachians as nitrogen deposition rates increase and regional temperature and precipitation regimes shift.
Assuntos
Micobioma/fisiologia , Micorrizas/química , Microbiologia do Solo , Solo/química , Biodiversidade , DNA Fúngico/análise , Ecossistema , Florestas , Fungos/classificação , Fungos/fisiologia , Concentração de Íons de Hidrogênio , Mortierella/fisiologia , Nitrogênio , North Carolina , Plantas , TemperaturaRESUMO
BACKGROUND: Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. METHODS: We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. RESULTS: Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. CONCLUSIONS: This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously.
Assuntos
Ensaios Clínicos Fase II como Assunto/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Antineoplásicos/uso terapêutico , Teorema de Bayes , Biomarcadores Tumorais/metabolismo , Interpretação Estatística de Dados , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Resultado do TratamentoRESUMO
The American bullfrog (Rana catesbeiana) has an amphibian papilla (AP) that senses airborne, low-frequency sound and generates distortion product otoacoustic emissions (DPOAEs) similar to other vertebrate species. Although ranid frogs are typically found in noisy environments, the effects of noise on the AP have not been studied. First, we determined the noise levels that diminished DPOAE at 2f1-f2 using an f2 stimulus level at 80 dB SPL and that also produced morphological damage of the sensory epithelium. Second, we compared DPOAE (2f1-f2) responses with histopathologic changes occurring in bullfrogs after noise exposure. Consistent morphological damage, such as fragmented hair cells and missing bundles, as well as elimination of DPOAE responses were seen only after very high-level (>150 dB SPL) sound exposures. The morphological response of hair cells to noise differed along the mediolateral AP axis: medial hair cells were sensitive to noise and lateral hair cells were relatively insensitive to noise. Renewed or repaired hair cells were not observed until 9 days post-exposure. Following noise exposure, DPOAE responses disappeared within 24 h and then recovered to normal pre-exposure levels within 3-4 days. Our results suggest that DPOAEs in the bullfrog are sensitive to the initial period of hair cell damage. After noise-induced damage, the bullfrog AP has functional recovery mechanisms that do not depend on substantial hair cell regeneration or repair. Thus, the bullfrog auditory system might serve as an interesting model for investigation of ways to prevent noise damage.
Assuntos
Células Ciliadas Auditivas/patologia , Perda Auditiva Provocada por Ruído/patologia , Ruído , Emissões Otoacústicas Espontâneas/fisiologia , Animais , Orelha Interna/fisiopatologia , Rana catesbeiana , Recuperação de Função FisiológicaRESUMO
BACKGROUND: Poly(ADP-ribose) polymerase (PARP) is implicated in DNA repair and transcription regulation. Niraparib (MK4827) is an oral potent, selective PARP-1 and PARP-2 inhibitor that induces synthetic lethality in preclinical tumour models with loss of BRCA and PTEN function. We investigated the safety, tolerability, maximum tolerated dose, pharmacokinetic and pharmacodynamic profiles, and preliminary antitumour activity of niraparib. METHODS: In a phase 1 dose-escalation study, we enrolled patients with advanced solid tumours at one site in the UK and two sites in the USA. Eligible patients were aged at least 18 years; had a life expectancy of at least 12 weeks; had an Eastern Cooperative Oncology Group performance status of 2 or less; had assessable disease; were not suitable to receive any established treatments; had adequate organ function; and had discontinued any previous anticancer treatments at least 4 weeks previously. In part A, cohorts of three to six patients, enriched for BRCA1 and BRCA2 mutation carriers, received niraparib daily at ten escalating doses from 30 mg to 400 mg in a 21-day cycle to establish the maximum tolerated dose. Dose expansion at the maximum tolerated dose was pursued in 15 patients to confirm tolerability. In part B, we further investigated the maximum tolerated dose in patients with sporadic platinum-resistant high-grade serous ovarian cancer and sporadic prostate cancer. We obtained blood, circulating tumour cells, and optional paired tumour biopsies for pharmacokinetic and pharmacodynamic assessments. Toxic effects were assessed by common toxicity criteria and tumour responses ascribed by Response Evaluation Criteria in Solid Tumors (RECIST). Circulating tumour cells and archival tumour tissue in prostate patients were analysed for exploratory putative predictive biomarkers, such as loss of PTEN expression and ETS rearrangements. This trial is registered with ClinicalTrials.gov, NCT00749502. FINDINGS: Between Sept 15, 2008, and Jan 14, 2011, we enrolled 100 patients: 60 in part A and 40 in part B. 300 mg/day was established as the maximum tolerated dose. Dose-limiting toxic effects reported in the first cycle were grade 3 fatigue (one patient given 30 mg/day), grade 3 pneumonitis (one given 60 mg/day), and grade 4 thrombocytopenia (two given 400 mg/day). Common treatment-related toxic effects were anaemia (48 patients [48%]), nausea (42 [42%]), fatigue (42 [42%]), thrombocytopenia (35 [35%]), anorexia (26 [26%]), neutropenia (24 [24%]), constipation (23 [23%]), and vomiting (20 [20%]), and were predominantly grade 1 or 2. Pharmacokinetics were dose proportional and the mean terminal elimination half-life was 36·4 h (range 32·8-46·0). Pharmacodynamic analyses confirmed PARP inhibition exceeded 50% at doses greater than 80 mg/day and antitumour activity was documented beyond doses of 60 mg/day. Eight (40% [95% CI 19-64]) of 20 BRCA1 or BRCA2 mutation carriers with ovarian cancer had RECIST partial responses, as did two (50% [7-93]) of four mutation carriers with breast cancer. Antitumour activity was also reported in sporadic high-grade serous ovarian cancer, non-small-cell lung cancer, and prostate cancer. We recorded no correlation between loss of PTEN expression or ETS rearrangements and measures of antitumour activity in patients with prostate cancer. INTERPRETATION: A recommended phase 2 dose of 300 mg/day niraparib is well tolerated. Niraparib should be further assessed in inherited and sporadic cancers with homologous recombination DNA repair defects and to target PARP-mediated transcription in cancer. FUNDING: Merck Sharp and Dohme.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Indazóis/uso terapêutico , Mutação/genética , Recidiva Local de Neoplasia/diagnóstico , Neoplasias/tratamento farmacológico , Piperidinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases , Adulto , Idoso , Estudos de Coortes , Feminino , Seguimentos , Heterozigoto , Humanos , Indazóis/farmacocinética , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Piperidinas/farmacocinética , Prognóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Distribuição TecidualRESUMO
Adaptive enrichment allows for pre-defined patient subgroups of interest to be investigated throughout the course of a clinical trial. These designs have gained attention in recent years because of their potential to shorten the trial's duration and identify effective therapies tailored to specific patient groups. We describe enrichment trials which consider long-term time-to-event outcomes but also incorporate additional short-term information from routinely collected longitudinal biomarkers. These methods are suitable for use in the setting where the trajectory of the biomarker may differ between subgroups and it is believed that the long-term endpoint is influenced by treatment, subgroup and biomarker. Methods are most promising when the majority of patients have biomarker measurements for at least two time points. We implement joint modelling of longitudinal and time-to-event data to define subgroup selection and stopping criteria and we show that the familywise error rate is protected in the strong sense. To assess the results, we perform a simulation study and find that, compared to the study where longitudinal biomarker observations are ignored, incorporating biomarker information leads to increases in power and the (sub)population which truly benefits from the experimental treatment being enriched with higher probability at the interim analysis. The investigations are motivated by a trial for the treatment of metastatic breast cancer and the parameter values for the simulation study are informed using real-world data where repeated circulating tumour DNA measurements and HER2 statuses are available for each patient and are used as our longitudinal data and subgroup identifiers, respectively.
RESUMO
The presence of inhibitory immune cells and difficulty in generating activated effector T cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T cells with effector phenotypes. The in vitro re-challenge of T cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T cells with specificity for hTERT. However, a population of exhausted PD-1+ cytotoxic T cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T cell population.
Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Telomerase , Masculino , Humanos , Linfócitos T CD8-Positivos , Telomerase/genética , Telomerase/metabolismo , Vacinação , Peptídeos , Vacinas Anticâncer/efeitos adversos , Receptores de Antígenos de Linfócitos TRESUMO
Cancer Core Europe brings together the expertise, resources, and interests of seven leading cancer institutes committed to leveraging collective innovation and collaboration in precision oncology. Through targeted efforts addressing key medical challenges in cancer and partnerships with multiple stakeholders, the consortium seeks to advance cancer research and enhance equitable patient care.
Assuntos
Oncologia , Neoplasias , Humanos , Europa (Continente) , Oncologia/organização & administração , Oncologia/métodos , Neoplasias/terapia , Pesquisa Biomédica/organização & administração , Medicina de Precisão/métodosRESUMO
More women die from breast cancer across the world today than from any other type of malignancy. The clinical course of breast cancer varies tremendously between patients. While some of this variability is explained by traditional clinico-pathological factors (including patient age, tumor stage, histological grade and estrogen receptor status), molecular profiling studies have defined breast cancer subtypes with distinct clinical outcomes. This mini-review considers recent studies which have used genomics technologies in an attempt to identify new biomarkers of prognosis and treatment response. These studies highlight the genetic heterogeneity that exists within breast cancers in space and time.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Heterogeneidade Genética , Medicina de Precisão/métodos , Animais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Feminino , Humanos , Mutação/genética , Medicina de Precisão/tendênciasRESUMO
BACKGROUND: The pharmaceutical industry's productivity has been declining over the last two decades and high attrition rates and reduced regulatory approvals are being seen. The development of oncology drugs is particularly challenging with low rates of approval for novel treatments when compared with other therapeutic areas. Reliably establishing the potential of novel treatment and the corresponding optimal dosage is a key component to ensure efficient overall development. A growing interest lies in terminating developments of poor treatments quickly while enabling accelerated development for highly promising interventions. METHODS: One approach to reliably establish the optimal dosage and the potential of a novel treatment and thereby improve efficiency in the drug development pathway is the use of novel statistical designs that make efficient use of the data collected. RESULTS: In this paper, we discuss different (seamless) strategies for early oncology development and illustrate their strengths and weaknesses through real trial examples. We provide some directions for good practices in early oncology development, discuss frequently seen missed opportunities for improved efficiency and some future opportunities that have yet to fully develop their potential in early oncology treatment development. DISCUSSION: Modern methods for dose-finding have the potential to shorten and improve dose-finding and only small changes to current approaches are required to realise this potential.
Assuntos
Oncologia , Neoplasias , Humanos , Desenvolvimento de Medicamentos , Projetos de Pesquisa , Neoplasias/tratamento farmacológicoRESUMO
Each year, bovine respiratory disease (BRD) results in significant economic loss in the cattle sector, and novel metabolic profiling for early diagnosis represents a promising tool for developing effective measures for disease management. Here, 1H-nuclear magnetic resonance (1H-NMR) spectra were used to characterize metabolites from blood plasma collected from male dairy calves (n = 10) intentionally infected with two of the main BRD causal agents, bovine respiratory syncytial virus (BRSV) and Mannheimia haemolytica (MH), to generate a well-defined metabolomic profile under controlled conditions. In response to infection, 46 metabolites (BRSV = 32, MH = 33) changed in concentration compared to the uninfected state. Fuel substrates and products exhibited a particularly strong effect, reflecting imbalances that occur during the immune response. Furthermore, 1H-NMR spectra from samples from the uninfected and infected stages were discriminated with an accuracy, sensitivity, and specificity ≥ 95% using chemometrics to model the changes associated with disease, suggesting that metabolic profiles can be used for further development, understanding, and validation of novel diagnostic tools.
Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Transtornos Respiratórios , Infecções por Vírus Respiratório Sincicial , Doenças Respiratórias , Animais , Bovinos , Masculino , Doenças Respiratórias/veterinária , Espectroscopia de Ressonância Magnética , Metabolômica , Plasma , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/veterináriaRESUMO
Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.