Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 32(15): 4278-4297, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211626

RESUMO

Pesticide resistance represents a clear and trackable case of adaptive evolution with a strong societal impact. Understanding the factors associated with the evolution and spread of resistance is imperative to develop sustainable crop management strategies. The two-spotted spider mite Tetranychus urticae, a major crop pest with worldwide distribution and a polyphagous lifestyle, has evolved resistance to most classes of pesticides. Tetranychus urticae exists as either a green- or a red-coloured morph. However, the extent of genetic divergence and reproductive compatibility vary across populations of these colour morphs, complicating their taxonomic resolution at the species level. Here, we studied patterns of genetic differentiation and barriers to gene flow within and between morphs of T. urticae in order to understand the factors that influence the spread of resistance mutations across its populations. We derived multiple iso-female lines from Tetranychus populations collected from agricultural crops. We generated genomic and morphological data, characterized their bacterial communities and performed controlled crosses. Despite morphological similarities, we found large genomic differentiation between the morphs. This pattern was reflected in the incomplete, but strong postzygotic incompatibility in crosses between colour morphs, while crosses within morphs from different geographical locations were largely compatible. In addition, our results suggest recent/on-going gene flow between green-coloured T. urticae and T. turkestani. By screening the sequences of 10 resistance genes, we found evidence for multiple independent origins and for single evolutionary origins of target-site resistance mutations. Our results indicate that target-site mutations mostly evolve independently in populations on different geographical locations, and that these mutations can spread due to incomplete barriers to gene flow within and between populations.


Assuntos
Praguicidas , Tetranychidae , Feminino , Animais , Cor , Genoma , Mutação , Genômica , Tetranychidae/genética
2.
Pest Manag Sci ; 80(4): 2021-2031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110295

RESUMO

BACKGROUND: Structural and chemical plant defence traits may reduce the efficacy of biological control agents in integrated pest management. Breeding programmes have shown arthropod predators' potential to acclimate to challenging host plants. However, whether and how these predators adapt to novel plant environments remain unclear. Using the predatory mite Phytoseiulus persimilis - herbivorous mite Tetranychus urticae system in an experimental evolution setup, we studied the adaptation mechanisms to tomato and cucumber, plants that possess a distinct repertoire of defensive traits. RESULTS: Experimental evolution experiments on whole plants revealed that allowing P. persimilis to adapt to tomatoes led to an ~100% larger population size. Independent feeding assays showed that tomato- and cucumber-adapted prey reduced predator fecundity. The deleterious effect of ingesting low-quality prey persisted after adaptation of the predator to both cucumber and tomato. We demonstrated that jasmonic acid (JA)-dependent defences reduce prey quality by evaluating predator performance on prey fed on JA defence-deficient tomato plants. Transcriptomic profiling of the replicated P. persimilis lines showed that long-term propagation on tomato and cucumber plants produces distinctive gene-expression levels. Predator adaptation to tomatoes results in the loss of a large transcriptional response, in which predicted cuticle-building rather than detoxification pathways are affected. CONCLUSION: We showed that the adaptation of predatory arthropods to a novel, challenging plant does not necessarily occur via the prey, but rather through the physical environment of the plant. We provided first insights into the underlying molecular mechanisms. © 2023 Society of Chemical Industry.


Assuntos
Artrópodes , Cucumis sativus , Ciclopentanos , Ácaros , Oxilipinas , Tetranychidae , Animais , Melhoramento Vegetal , Ácaros/fisiologia , Tetranychidae/genética , Plantas , Cucumis sativus/genética , Comportamento Predatório
3.
Pest Manag Sci ; 78(3): 881-895, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34862726

RESUMO

BACKGROUND: Acaricide application remains an integral component of integrated pest management (IPM) for the two-spotted spider mite Tetranychus urticae. Species and strains of phytoseiid predatory mites vary significantly in their response to acaricides. For the success of IPM, it is imperative to identify the determinants of selectivity and molecular stress responses of acaricides in predatory mites. RESULTS: The three classical acaricides bifenazate, cyflumetofen, and fenbutatin oxide did not affect the survival and fecundity of Phytoseiulus persimilis regardless of the route of exposure. Selectivity of the orange oil and terpenoid blend-based botanical acaricides was low via a combination of direct exposure, acaricide-laced diet, and residual exposure but improved when limiting exposure only to diet. To gain insights into the molecular stress responses, the transcriptome of P. persimilis was assembled. Subsequent gene expression analysis of predatory mites orally exposed to fenbutatin oxide and orange oil yielded only a limited xenobiotic stress response. In contrast, P. persimilis exhibited target-site resistance mutations, including I260M in SdhB, I1017M in CHS1, and kdr and super-kdr in VGSC. Extending the screen using available Phytoseiidae sequences uncovered I136T, S141F in cytb, G119S in AChE, and A2083V in ACC, well-known target-sites of acaricides. CONCLUSION: Selectivity of the tested botanical acaricides to P. persimilis was low but could be enhanced by restricting exposure to a single route. Differential gene expression analysis did not show a robust induced stress response after sublethal exposure. In contrast, this study uncovered target-site mutations that may help to explain the physiological selectivity of several classical acaricides to phytoseiid predators.


Assuntos
Acaricidas , Ácaros , Tetranychidae , Acaricidas/farmacologia , Animais , Controle de Pragas , Comportamento Predatório , Tetranychidae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA