Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Ann Bot ; 132(2): 293-318, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37439499

RESUMO

BACKGROUND AND AIMS: The Lythraceae are a mainly subtropical to tropical family of the order Myrtales with 28 currently accepted genera and approximately 600 species. There is currently no well-supported phylogenetic and biogeographical hypothesis of the Lythraceae incorporating all currently accepted genera, which we sought to provide. METHODS: Plastomes of representative species of 18 distinct Lythraceae genera were sequenced and annotated. Together with existing sequences, plastomes of all 28 currently accepted genera in the Lythraceae were brought together for the first time. The plastomes were aligned and a Bayesian phylogenetic hypothesis was produced. We then conducted a time-calibrated Bayesian analysis and a biogeographical analysis. KEY RESULTS: Plastome-based Bayesian and maximum-likelihood phylogenetic trees are generally congruent with recent nuclear phylogenomic data and resolve two deeply branching major clades in the Lythraceae. One major clade concentrates shrubby and arboreal South American and African genera that inhabit seasonally dry environments, with larger, often winged seeds, adapted to dispersal by the wind. The second major clade concentrates North American, Asian, African and several near-cosmopolitan herbaceous, shrubby and arboreal genera, often inhabiting humid or aquatic environments, with smaller seeds possessing structures that facilitate dispersal by water. CONCLUSIONS: We hypothesize that the Lythraceae dispersed early in the Late Cretaceous from South American to North American continents, with subsequent expansion in the Late Cretaceous of a North American lineage through Laurasia to Africa via a boreotropical route. Two later expansions of South American clades to Africa in the Palaeocene and Eocene, respectively, are also hypothesized. Transoceanic dispersal in the family is possibly facilitated by adaptations to aquatic environments that are common to many extant genera of the Lythraceae, where long-distance dispersal and vicariance may be invoked to explain several remarkable disjunct distributions in Lythraceae clades.


Assuntos
Lythraceae , Filogenia , Filogeografia , Teorema de Bayes , África
2.
Syst Biol ; 70(3): 508-526, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32483631

RESUMO

The consequences of the Cretaceous-Paleogene (K-Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous-Paleogene (K-Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events].


Assuntos
Extinção Biológica , Fabaceae , Animais , Evolução Biológica , Evolução Molecular , Fabaceae/genética , Fósseis , Filogenia , Poliploidia
3.
Plant J ; 103(2): 547-560, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32175641

RESUMO

Receptor-like kinases (RLKs) represent the largest group of cell surface receptors in plants. The monophyletic leucine-rich repeat (LRR)-RLK subfamily II is considered to contain the somatic embryogenesis receptor kinases (SERKs) and NSP-interacting kinases known to be involved in developmental processes and cellular immunity in plants. There are only a few published studies on the phylogenetics of LRR-RLKII; unfortunately these suffer from poor taxon/gene sampling. Hence, it is not clear how many and what main clades this family contains, let alone what structure-function relationships exist. We used 1342 protein sequences annotated as 'SERK' and 'SERK-like' plus related sequences in order to estimate phylogeny within the LRR-RLKII clade, using the nematode protein kinase Pelle as an outgroup. We reconstruct five main clades (LRR-RLKII 1-5), in each of which the main pattern of land plant relationships re-occurs, confirming previous hypotheses that duplication events happened in this gene subfamily prior to divergence among land plant lineages. We show that domain structures and intron-exon boundaries within the five clades are well conserved in evolution. Furthermore, phylogenetic patterns based on the separate LRR and kinase parts of LRR-RLKs are incongruent: whereas the LRR part supports a LRR-RLKII 2/3 sister group relationship, the kinase part supports clades 1/2. We infer that the kinase part includes few 'radical' amino acid changes compared with the LRR part. Finally, our results confirm that amino acids involved in each LRR-RLKII-receptor complex interaction are located at N-capping residues, and that the short amino acid motifs of this interaction domain are highly conserved throughout evolution within the five LRR-RLKII clades.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Plantas/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas/enzimologia , Conformação Proteica , Proteínas Quinases/genética
4.
New Phytol ; 225(3): 1355-1369, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665814

RESUMO

Phylogenomics is increasingly used to infer deep-branching relationships while revealing the complexity of evolutionary processes such as incomplete lineage sorting, hybridization/introgression and polyploidization. We investigate the deep-branching relationships among subfamilies of the Leguminosae (or Fabaceae), the third largest angiosperm family. Despite their ecological and economic importance, a robust phylogenetic framework for legumes based on genome-scale sequence data is lacking. We generated alignments of 72 chloroplast genes and 7621 homologous nuclear-encoded proteins, for 157 and 76 taxa, respectively. We analysed these with maximum likelihood, Bayesian inference, and a multispecies coalescent summary method, and evaluated support for alternative topologies across gene trees. We resolve the deepest divergences in the legume phylogeny despite lack of phylogenetic signal across all chloroplast genes and the majority of nuclear genes. Strongly supported conflict in the remainder of nuclear genes is suggestive of incomplete lineage sorting. All six subfamilies originated nearly simultaneously, suggesting that the prevailing view of some subfamilies as 'basal' or 'early-diverging' with respect to others should be abandoned, which has important implications for understanding the evolution of legume diversity and traits. Our study highlights the limits of phylogenetic resolution in relation to rapid successive speciation.


Assuntos
Evolução Molecular , Fabaceae/classificação , Fabaceae/genética , Variação Genética , Genômica , Filogenia , Sequência de Bases , Teorema de Bayes , Genes de Cloroplastos , Funções Verossimilhança , Especificidade da Espécie
5.
Mol Phylogenet Evol ; 137: 33-43, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30926482

RESUMO

The predominantly South-African plant genus Pelargonium L'Hér. (Geraniaceae) displays remarkable morphological diversity, several basic chromosome numbers as well as high levels of organelle genomic rearrangements, and represents the 7th largest Cape Floristic Region clade. In this study, we reconstructed a phylogenetic tree based on 74 plastome exons and nuclear rDNA ITS regions for 120 species, which represents 43% taxon coverage for Pelargonium. We also performed a dating analysis to examine the timing of the major radiations in the genus. Phylogenetic analyses of nucleotide, amino acid, and ITS alignments confirmed the previously-documented subgeneric split into five main clades ((C1,C2),(B(A1,A2))) although clade only A1 received low bootstrap support. Using calibration evidence from a range of sources the Pelargonium crown age was estimated to be 9.7 My old, much younger than previous estimates for the genus but similar to recent studies of other Cape Floristic lineages that are part of both Fynbos and Succulent Karoo biomes.


Assuntos
Genomas de Plastídeos , Pelargonium/crescimento & desenvolvimento , Pelargonium/genética , Filogenia , Calibragem , Variação Genética , Funções Verossimilhança , Fatores de Tempo
6.
Mol Biol Evol ; 29(11): 3371-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22628532

RESUMO

Most fungal plant pathogens secrete effector proteins during pathogenesis to manipulate their host's defense and promote disease. These are so highly diverse in sequence and distribution, they are essentially considered as species-specific. However, we have recently shown the presence of homologous effectors in fungal species of the Dothideomycetes class. One such example is Ecp2, an effector originally described in the tomato pathogen Cladosporium fulvum but later detected in the plant pathogenic fungi Mycosphaerella fijiensis and Mycosphaerella graminicola as well. Here, using in silico sequence-similarity searches against a database of 135 fungal genomes and GenBank, we extend our queries for homologs of Ecp2 to the fungal kingdom and beyond, and further study their history of diversification. Our analyses show that Ecp2 homologs are members of an ancient and widely distributed superfamily of putative fungal effectors, which we term Hce2 for Homologs of C. fulvum Ecp2. Molecular evolutionary analyses show that the superfamily originated and diversified within the fungal kingdom, experiencing multiple lineage-specific expansions and losses that are consistent with the birth-and-death model of gene family evolution. Newly formed paralogs appear to be subject to diversification early after gene duplication events, whereas at later stages purifying selection acts to preserve diversity and the newly evolved putative functions. Some members of the Hce2 superfamily are fused to fungal Glycoside Hydrolase family 18 chitinases that show high similarity to the Zymocin killer toxin from the dairy yeast Kluyveromyces lactis, suggesting an analogous role in antagonistic interactions. The observed high rates of gene duplication and loss in the Hce2 superfamily, combined with diversification in both sequence and possibly functions within and between species, suggest that Hce2s are involved in adaptation to stresses and new ecological niches. Such findings address the need to rationalize effector biology and evolution beyond the perspective of solely host-microbe interactions.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Proteínas Fúngicas/genética , Família Multigênica , Sequência de Aminoácidos , Proteínas Fúngicas/química , Fungos/classificação , Fungos/genética , Duplicação Gênica/genética , Especiação Genética , Genoma Fúngico/genética , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Especificidade da Espécie
7.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184188

RESUMO

Brassica oleracea displays enormous phenotypic variation, including vegetables like cabbage, broccoli, cauliflower, kohlrabi, kales etc. Its domestication has not been clarified, despite several genetic studies and investigations of ancient literature. We used 14 152 high-quality SNP markers for population genetic studies and species-tree estimation (treating morphotypes as "species") using SVD-quartets coalescent-modelling of a collection of 912 globally distributed accessions representing ten morphotypes of B. oleracea, wild B. oleracea accessions and nine related C9 Brassica species. Our genealogical tree provided evidence for two domestication lineages, the "leafy head" lineage (LHL) and the "arrested inflorescence" lineage (AIL). It also showed that kales are polyphyletic with regards to B. oleracea morphotypes, which fits ancient literature describing highly diverse kale types at around 400 BC. The SVD-quartets species tree topology showed that different kale clades are sister to either the LHL or the AIL. Cabbages from the middle-east formed the first-branching cabbage-clade, supporting the hypothesis that cabbage domestication started in the middle-east, which is confirmed by archeological evidence and historic writings. We hypothesize that cabbages and cauliflowers stem from kales introduced from Western Europe to the middle-east, possibly transported with the tin-trade routes in the Bronze age, to be re-introduced later into Europe. Cauliflower is the least diverse morphotype showing strong genetic differentiation with other morphotypes except broccoli, suggesting a strong genetic bottleneck. Genetic diversity reduced from landraces to modern hybrids for almost all morphotypes. This comprehensive Brassica C-group germplasm collection provides valuable genetic resources and a sound basis for B. oleracea breeding.

8.
Front Plant Sci ; 13: 978417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311071

RESUMO

This study generated and analyzed complete plastome and internal transcribed spacer (ITS) data of 46 Lactuca species, 13 African endemic (AE) Lactuca species, and 15 species from eight related genera in Lactucinae. The new plastome and nuclear ITS sequences were then used to reconstruct the phylogenetic relationships of Lactuca species. The whole-plastome data were used to estimate divergence time and ancestral area reconstruction of the identified major Lactuca lineages. The results showed that Lactuca species are generally similar in plastome size, Guanine and Cytosine (GC) content, gene structure, and categories, although crop lettuce (Lactuca sativa L.) and its gene pool relatives were found to have one unique pseudogene (ψ ndhF), and accD, atpF, cemA, clpP, and rpl22 showed signs of positive selection. Our phylogenomic analysis demonstrated that Lactuca is monophyletic after excluding Lactuca alatipes Collett and Hemsl and AE Lactuca species. AE Lactuca species are morphologically distinct from core Lactuca lineage and need to be excluded from Lactua. The core Lactuca species most likely originated from Asia-Temperate W ~6.82 Mya and then dispersed globally and formed nine clades. Finally, the lettuce gene pool concept was amended according to the phylogenetic and historical biogeographic analyses. This study revised the circumscription of Lactuca, revealed robust phylogenetic relationships within the genus, and provided insights into Lactucinae phylogeny. The lettuce gene pool species could be used as potential genetic resources for lettuce breeding.

9.
BMC Evol Biol ; 11: 39, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21303519

RESUMO

BACKGROUND: The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora--South Africa's biodiversity hotspot--through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years. RESULTS: Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology. CONCLUSIONS: Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record.


Assuntos
Biodiversidade , Evolução Biológica , Mudança Climática , Filogenia , Ecologia/métodos , Magnoliopsida/classificação , Magnoliopsida/genética , África do Sul
10.
Mol Biol Evol ; 27(1): 55-71, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19744998

RESUMO

Brassicaceae is an important family at both the agronomic and scientific level. The family not only includes several model species, but it is also becoming an evolutionary model at the family level. However, resolving the phylogenetic relationships within the family has been problematic, and a large-scale molecular phylogeny in terms of generic sampling and number of genes is still lacking. In particular, the deeper relationships within the family, for example between the three major recognized lineages, prove particularly hard to resolve. Using a slow-evolving mitochondrial marker (nad4 intron 1), we reconstructed a comprehensive phylogeny in generic representation for the family. In addition, and because resolution was very low in previous single marker phylogenies, we adopted a supermatrix approach by concatenating all checked and reliable sequences available on GenBank as well as new sequences for a total 207 currently recognized genera and eight molecular markers representing a comprehensive coverage of all three genomes. The supermatrix was dated under an uncorrelated relaxed molecular clock using a direct fossil calibration approach. Finally, a lineage-through-time-plot and rates of diversification for the family were generated. The resulting tree, the largest in number of genera and markers sampled to date and covering the whole family in a representative way, provides important insights into the evolution of the family on a broad scale. The backbone of the tree remained largely unresolved and is interpreted as the consequence of early rapid radiation within the family. The age of the family was inferred to be 37.6 (24.2-49.4) Ma, which largely agrees with previous studies. The ages of all major lineages and tribes are also reported. Analysis of diversification suggests that Brassicaceae underwent a rapid period of diversification, after the split with the early diverging tribe Aethionemeae. Given the dates found here, the family appears to have originated under a warm and humid climate approximately 37 Ma. We suggest that the rapid radiation detected was caused by a global cooling during the Oligocene coupled with a genome duplication event. This duplication could have allowed the family to rapidly adapt to the changing climate.


Assuntos
Brassicaceae/genética , Evolução Molecular , Filogenia , Teorema de Bayes , Complexo I de Transporte de Elétrons/genética , Fósseis , Variação Genética , Proteínas de Plantas/genética
11.
Genome Biol Evol ; 13(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893846

RESUMO

The repetitive part of the genome (the repeatome) contains a wealth of often overlooked information that can be used to resolve phylogenetic relationships and test evolutionary hypotheses for clades of related plant species such as Pelargonium. We have generated genome skimming data for 18 accessions of Pelargonium section Ciconium and one outgroup. We analyzed repeat abundancy and repeat similarity in order to construct repeat profiles and then used these for phylogenetic analyses. We found that phylogenetic trees based on read similarity were largely congruent with previous work based on morphological and chloroplast sequence data. For example, results agreed in identifying a "Core Ciconium" group which evolved after the split with P. elongatum. We found that this group was characterized by a unique set of repeats, which confirmed currently accepted phylogenetic hypotheses. We also found four species groups within P. sect. Ciconium that reinforce previous plastome-based reconstructions. A second repeat expansion was identified in a subclade which contained species that are considered to have dispersed from Southern Africa into Eastern Africa and the Arabian Peninsula. We speculate that the Core Ciconium repeat set correlates with a possible WGD event leading to this branch.


Assuntos
Pelargonium , África Oriental , Evolução Biológica , Cloroplastos/genética , Evolução Molecular , Genoma de Planta , Pelargonium/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico
12.
Front Plant Sci ; 11: 614871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391328

RESUMO

The genetics underlying Cyto-Nuclear Incompatibility (CNI) was studied in Pelargonium interspecific hybrids. We created hybrids of 12 closely related crop wild relatives (CWR) with the ornamental P. × hortorum. Ten of the resulting 12 (F1) interspecific hybrids segregate for chlorosis suggesting biparental plastid inheritance. The segregation ratios of the interspecific F2 populations show nuclear interactions of one, two, or three nuclear genes regulating plastid function dependent on the parents. We further validated that biparental inheritance of plastids is common in section Ciconium, using diagnostic PCR primers. Our results pave the way for using the diverse species from section Ciconium, each with its own set of characteristics, as novel sources of desired breeding traits for P. × hortorum cultivars.

13.
Ecol Evol ; 10(8): 3647-3654, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32313624

RESUMO

Environmental DNA (eDNA) is used for monitoring the occurrence of freshwater organisms. Various studies show a relation between the amount of eDNA detected and target organism abundance, thus providing a potential proxy for reconstructing population densities. However, environmental factors such as water temperature and microbial activity are known to affect the amount of eDNA present as well. In this study, we use controlled aquarium experiments using Gammarus pulex L. (Amphipoda) to investigate the relationship between the amount of detectable eDNA through time, pH, and levels of organic material. We found eDNA to degrade faster when organic material was added to the aquarium water, but that pH had no significant effect. We infer that eDNA contained inside cells and mitochondria is extra resilient against degradation, though this may not reflect actual presence of target species. These results indicate that, although estimation of population density might be possible using eDNA, measured eDNA concentration could, in the future, be corrected for local environmental conditions in order to ensure accurate comparisons.

14.
PeerJ ; 8: e8823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274266

RESUMO

BACKGROUND: Variation in floral shapes has long fascinated biologists and its modelling enables testing of evolutionary hypotheses. Recent comparative studies that explore floral shape have largely ignored 3D floral shape. We propose quantifying floral shape by using geometric morphometrics on a virtual3D model reconstructed from 2D photographical data and demonstrate its performance in capturing shape variation. METHODS: This approach offers unique benefits to complement established imaging techniques (i) by enabling adequate coverage of the potential morphospace of large and diverse flowering-plant clades; (ii) by circumventing asynchronicity in anthesis of different floral parts; and (iii) by incorporating variation in copy number of floral organs within structures. We demonstrate our approach by analysing 90 florally-diverse species of the Southern African genus Pelargonium (Geraniaceae). We quantify Pelargonium floral shapes using 117 landmarks and show similarities in reconstructed morphospaces for nectar tube, corolla (2D datasets), and a combined virtual3D dataset. RESULTS: Our results indicate that Pelargonium species differ in floral shape, which can also vary extensively within a species. PCA results of the reconstructed virtual3D floral models are highly congruent with the separate 2D morphospaces, indicating it is an accurate, virtual, representation of floral shape. Through our approach, we find that adding the third dimension to the data is crucial to accurately interpret the manner of, as well as levels of, shape variation in flowers.

15.
PeerJ ; 8: e8225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025365

RESUMO

Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the 'Global Museum') is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow's technologies and hence further increasing the relevance of natural history museums.

16.
Mol Phylogenet Evol ; 51(1): 44-53, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18411064

RESUMO

Like island-endemic taxa, whose origins are expected to postdate the appearance of the islands on which they occur, biome-endemic taxa should be younger than the biomes to which they are endemic. Accordingly, the ages of biome-endemic lineages may offer insights into biome history. In this study, we used the ages of multiple lineages to explore the origin and diversification of two southern African biomes whose remarkable floristic richness and endemism has identified them as global biodiversity hotspots (succulent karoo and fynbos). We used parsimony optimization to identify succulent karoo- and fynbos-endemic lineages across 17 groups of plants, for which dated phylogenies had been inferred using a relaxed Bayesian (BEAST) approach. All succulent karoo-endemic lineages were less than 17.5 My old, the majority being younger than 10 My. This is largely consistent with suggestions that this biome is the product of recent radiation, probably triggered by climatic deterioration since the late Miocene. In contrast, fynbos-endemic lineages showed a broader age distribution, with some lineages originating in the Oligocene, but most being more recent. Also, in groups having both succulent karoo- and fynbos-endemic lineages, there was a tendency for the latter to be older. These patterns reflect the greater antiquity of fynbos, but also indicate considerable recent speciation, probably through a combination of climatically-induced refugium fragmentation and adaptive radiation.


Assuntos
Biodiversidade , Evolução Biológica , Magnoliopsida/genética , Filogenia , África Austral , Teorema de Bayes , Especiação Genética , Magnoliopsida/classificação
17.
Cladistics ; 25(1): 64-77, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34879617

RESUMO

Due to morphological reduction and absence of amplifiable plastid genes, the identification of photosynthetic relatives of heterotrophic plants is problematic. Although nuclear and mitochondrial gene sequences may offer a welcome alternative source of phylogenetic markers, the presence of rate heterogeneity in these genes may introduce bias/systematic error in phylogenetic analyses. We examine the phylogenetic position of Thismiaceae based on nuclear 18S rDNA and mitochondrial atpA DNA sequence data, as well as using parsimony, likelihood and Bayesian inference methods. Significant differences in evolutionary rates of these genes between closely related taxa lead to conflicting results: while parsimony analyses of 18S rDNA and combined data strongly support the monophyly of Thismiaceae, Bayesian inference, with and without a relaxed molecular clock, as well as the Swofford-Olsen-Waddell-Hillis (SOWH) test confidently reject this hypothesis. We show that rate heterogeneity in our data leads to long-branch attraction artifacts in parsimony analysis. However, using model-based inference methods the question of whether Thismiaceae are monophyletic remains elusive. On the one hand maximum likelihood nonparametric bootstrapping and parametric hypothesis tests fail to support a paraphyletic Thismiaceae, on the other hand Bayesian inference methods (both without and with a relaxed clock) significantly reject a monophyletic Thismiaceae. These results show that an adequate sampling, the use of rate homogeneous data, and the application of different inference methods are important factors for developing phylogenetic hypotheses of myco-heterotrophic plants. © The Willi Hennig Society 2009.

18.
Genome Biol Evol ; 11(7): 1857-1869, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31209489

RESUMO

Mitochondria retain their own genome, a hallmark of their bacterial ancestry. Mitochondrial genomes (mtDNA) are highly diverse in size, shape, and structure, despite their conserved function across most eukaryotes. Exploring extreme cases of mtDNA architecture can yield important information on fundamental aspects of genome biology. We discovered that the mitochondrial genomes of a basidiomycete fungus (Termitomyces spp.) contain an inverted repeat (IR), a duplicated region half the size of the complete genome. In addition, we found an abundance of sequences capable of forming G-quadruplexes (G4DNA); structures that can disrupt the double helical formation of DNA. G4DNA is implicated in replication fork stalling, double-stranded breaks, altered gene expression, recombination, and other effects. To determine whether this occurrence of IR and G4DNA was correlated within the genus Termitomyces, we reconstructed the mitochondrial genomes of 11 additional species including representatives of several closely related genera. We show that the mtDNA of all sampled species of Termitomyces and its sister group, represented by the species Tephrocybe rancida and Blastosporella zonata, are characterized by a large IR and enrichment of G4DNA. To determine whether high mitochondrial G4DNA content is common in fungi, we conducted the first broad survey of G4DNA content in fungal mtDNA, revealing it to be a highly variable trait. The results of this study provide important direction for future research on the function and evolution of G4DNA and organellar IRs.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Termitomyces/genética , Quadruplex G , Sequências Repetidas Invertidas/genética
19.
Front Plant Sci ; 5: 567, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368628

RESUMO

Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from transcriptome sequences using three approaches: POFAD (Phylogeny of Organisms from Allelic Data, uses allelic information of sequence data), RAxML (Randomized Accelerated Maximum Likelihood, tree building based on concatenated consensus sequences) and Consensus Network (constructing a network summarizing among gene tree conflicts). Twenty six gene contigs were chosen based on the presence of orthologous sequences in all cultivars, seven of which also had an orthologous sequence in Tulipa, used as out-group. The three approaches generated the same topology. Although the resolution offered by these approaches is high, in this case there was no extra benefit in using allelic information. We conclude that these 26 genes can be widely applied to construct a species tree for the genus Lilium.

20.
PLoS One ; 8(7): e69189, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922691

RESUMO

Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal. Furthermore, NGS of historical DNA enables recovering crucial genetic information from old type specimens that to date have remained mostly unutilized and, thus, opens up a new frontier for taxonomic research as well.


Assuntos
Genoma de Inseto/genética , Genoma de Planta/genética , Genômica , Insetos/genética , Museus , Plantas/genética , Animais , Arabidopsis/genética , Bancos de Espécimes Biológicos , Núcleo Celular/genética , DNA/genética , DNA/isolamento & purificação , Dano ao DNA/genética , Fungos/genética , Genótipo , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA