Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(3): E154-63, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22203979

RESUMO

TBX3 is critical for human development: mutations in TBX3 cause congenital anomalies in patients with ulnar-mammary syndrome. Data from mice and humans suggest multiple roles for Tbx3 in development and function of the cardiac conduction system. The mechanisms underlying the functional development, maturation, and maintenance of the conduction system are not well understood. We tested the requirements for Tbx3 in these processes. We generated a unique series of Tbx3 hypomorphic and conditional mouse mutants with varying levels and locations of Tbx3 activity within the heart, and developed techniques for evaluating in vivo embryonic conduction system function. Disruption of Tbx3 function in different regions of the developing heart causes discrete phenotypes and lethal arrhythmias: sinus pauses and bradycardia indicate sinoatrial node dysfunction, whereas preexcitation and atrioventricular block reveal abnormalities in the atrioventricular junction. Surviving Tbx3 mutants are at increased risk for sudden death. Arrhythmias induced by knockdown of Tbx3 in adults reveal its requirement for conduction system homeostasis. Arrhythmias in Tbx3-deficient embryos are accompanied by disrupted expression of multiple ion channels despite preserved expression of previously described conduction system markers. These findings indicate that Tbx3 is required for the conduction system to establish and maintain its correct molecular identity and functional properties. In conclusion, Tbx3 is required for the functional development, maturation, and homeostasis of the conduction system in a highly dosage-sensitive manner. TBX3 and its regulatory targets merit investigation as candidates for human arrhythmias.


Assuntos
Arritmias Cardíacas/fisiopatologia , Dosagem de Genes , Sistema de Condução Cardíaco/fisiopatologia , Homeostase/genética , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Alelos , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/complicações , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/patologia , Bloqueio Atrioventricular/complicações , Bloqueio Atrioventricular/diagnóstico por imagem , Bloqueio Atrioventricular/patologia , Bloqueio Atrioventricular/fisiopatologia , Nó Atrioventricular/patologia , Nó Atrioventricular/fisiopatologia , Conexina 43/metabolismo , Eletrocardiografia , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Sistema de Condução Cardíaco/anormalidades , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/patologia , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Mutação/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética , Análise de Sobrevida , Proteínas com Domínio T/metabolismo , Ultrassonografia
2.
Circ Res ; 105(1): 61-9, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19498200

RESUMO

The atrioventricular (AV) node is a recurrent source of potentially life-threatening arrhythmias. Nevertheless, limited data are available on its developmental control or molecular phenotype. We used a novel AV nodal myocardium-specific reporter mouse to gain insight into the gene programs determining the formation and phenotype of the developing AV node. In this reporter, green fluorescent protein (GFP) expression was driven by a 160-kbp bacterial artificial chromosome with Tbx3 and flanking sequences. GFP was selectively active in the AV canal of embryos and AV node of adults, whereas the Tbx3-positive AV bundle and sinus node were devoid of GFP, demonstrating that distinct regulatory sequences and pathways control expression in the components of the conduction system. Fluorescent AV nodal and complementary Nppa-positive chamber myocardial cell populations of embryonic day 10.5 embryos and of embryonic day 17.5 fetuses were purified using fluorescence-activated cell sorting, and their expression profiles were assessed by genome-wide microarray analysis, providing valuable information concerning their molecular identities. We constructed a comprehensive list of sodium, calcium, and potassium channel genes specific for developing nodal or chamber myocardium. Furthermore, the data revealed that the AV node and the chamber (working) myocardium phenotypes diverge during development but that the functional gene classes characterizing both subtypes are maintained. One of the repertoires identified in the AV node-specific gene profiles consists of multiple neurotrophic factors and semaphorins, not yet appreciated to play a role in nodal development, revealing shared characteristics between nodal and nervous system development.


Assuntos
Nó Atrioventricular , Perfilação da Expressão Gênica/métodos , Proteínas com Domínio T/genética , Animais , Canais de Cálcio/genética , Cromossomos Artificiais Bacterianos , Embrião de Mamíferos , Genes Reporter , Proteínas de Fluorescência Verde , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Canais de Sódio/genética
3.
Circ Res ; 102(11): 1340-9, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18467625

RESUMO

The cardiac conduction system consists of distinctive heart muscle cells that initiate and propagate the electric impulse required for coordinated contraction. The conduction system expresses the transcriptional repressor Tbx3, which is required for vertebrate development and controls the formation of the sinus node. In humans, mutations in Tbx3 cause ulnar-mammary syndrome. Here, we investigated the role of Tbx3 in the molecular specification of the atrioventricular conduction system. Expression analysis revealed early delineation of the atrioventricular bundle and proximal bundle branches by Tbx3 expression in human, mouse, and chicken. Tbx3-deficient mice, which die between embryonic day 12.5 and 15.5, ectopically expressed genes for connexin (Cx)43, atrial natriuretic factor (Nppa), Tbx18, and Tbx20 in the atrioventricular bundle and proximal bundle branches. Cx40 was precociously upregulated in the atrioventricular bundle of Tbx3 mutants. Moreover, the atrioventricular bundle and branches failed to exit the cell cycle in Tbx3 mutant embryos. Finally, Tbx3-deficient embryos developed outflow tract malformations and ventricular septal defects. These data reveal that Tbx3 is required for the molecular specification of the atrioventricular bundle and bundle branches and for the development of the ventricular septum and outflow tract. Our data suggest a mechanism in which Tbx3 represses differentiation into ventricular working myocardium, thereby imposing the conduction system phenotype on cells within its expression domain.


Assuntos
Nó Atrioventricular/fisiologia , Sistema de Condução Cardíaco/fisiologia , Cardiopatias Congênitas/genética , Proteínas com Domínio T/fisiologia , Animais , Fator Natriurético Atrial/metabolismo , Nó Atrioventricular/embriologia , Ciclo Celular/genética , Embrião de Galinha , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Condução Cardíaco/embriologia , Cardiopatias Congênitas/patologia , Humanos , Camundongos , Camundongos Knockout , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Proteína alfa-5 de Junções Comunicantes
4.
J Cardiovasc Pharmacol ; 56(1): 6-15, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20505520

RESUMO

Disorders of the cardiac conduction system occur frequently and may cause life-threatening arrhythmias requiring medication or electronic pacemaker implantation. Repair or regeneration of conduction system components is currently not possible due to limited knowledge of the molecular regulation of pacemaker myocardium. Origin and development of the cardiac conduction system have been subject to debate for many decades. This review will discuss recent advances in our understanding of the molecular regulation of the development of the conduction system. We conclude that the components of the cardiac conduction system originate from embryonic myocardium that has maintained essential features of its primitive phenotype, whereas the adjacent myocardium differentiates into working myocardium.


Assuntos
Sistema de Condução Cardíaco/fisiologia , Miocárdio/metabolismo , Animais , Arritmias Cardíacas/fisiopatologia , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Miócitos Cardíacos/metabolismo , Fenótipo
5.
PLoS One ; 9(10): e110191, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25343378

RESUMO

The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development) and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production). Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER) and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.


Assuntos
Linhagem da Célula , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/citologia , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Linhagem da Célula/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Fluorescência , Genes Reporter , Hormônios/farmacologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Receptores de Estrogênio/metabolismo , Transcrição Gênica/efeitos dos fármacos
6.
J Clin Invest ; 122(7): 2519-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22706305

RESUMO

The contraction pattern of the heart relies on the activation and conduction of the electrical impulse. Perturbations of cardiac conduction have been associated with congenital and acquired arrhythmias as well as cardiac arrest. The pattern of conduction depends on the regulation of heterogeneous gene expression by key transcription factors and transcriptional enhancers. Here, we assessed the genome-wide occupation of conduction system-regulating transcription factors TBX3, NKX2-5, and GATA4 and of enhancer-associated coactivator p300 in the mouse heart, uncovering cardiac enhancers throughout the genome. Many of the enhancers colocalized with ion channel genes repressed by TBX3, including the clustered sodium channel genes Scn5a, essential for cardiac function, and Scn10a. We identified 2 enhancers in the Scn5a/Scn10a locus, which were regulated by TBX3 and its family member and activator, TBX5, and are functionally conserved in humans. We also provided evidence that a SNP in the SCN10A enhancer associated with alterations in cardiac conduction patterns in humans disrupts TBX3/TBX5 binding and reduces the cardiac activity of the enhancer in vivo. Thus, the identification of key regulatory elements for cardiac conduction helps to explain how genetic variants in noncoding regulatory DNA sequences influence the regulation of cardiac conduction and the predisposition for cardiac arrhythmias.


Assuntos
Elementos Facilitadores Genéticos , Polimorfismo de Nucleotídeo Único , Canais de Sódio/genética , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Sequência Consenso , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Variação Genética , Sistema de Condução Cardíaco/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Canal de Sódio Disparado por Voltagem NAV1.8 , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Análise de Sequência de DNA , Proteínas com Domínio T/metabolismo , Peixe-Zebra
7.
Cardiovasc Res ; 94(3): 439-49, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22419669

RESUMO

AIM: Treatment of disorders of the sinus node or the atrioventricular node requires insights into the molecular mechanisms of development and homoeostasis of these pacemaker tissues. In the developing heart, transcription factor TBX3 is required for pacemaker and conduction system development. Here, we explore the role of TBX3 in the adult heart and investigate whether TBX3 is able to reprogramme terminally differentiated working cardiomyocytes into pacemaker cells. METHODS AND RESULTS: TBX3 expression was ectopically induced in cardiomyocytes of adult transgenic mice using tamoxifen. Expression analysis revealed an efficient switch from the working myocardial expression profile to that of the pacemaker myocardium. This included suppression of genes encoding gap junction subunits (Cx40, Cx43), the cardiac Na(+) channel (Na(V)1.5; I(Na)), and inwardly rectifying K(+) ion channels (K(ir) genes; I(K1)). Concordantly, we observed conduction slowing in these hearts and reductions in I(Na) and I(K1) in cardiomyocytes isolated from these hearts. The reduction in I(K1) resulted in a more depolarized maximum diastolic potential, thus enabling spontaneous diastolic depolarization. Neither ectopic pacemaker activity nor pacemaker current I(f) was observed. Lentiviral expression of TBX3 in ventricular cardiomyocytes resulted in conduction slowing and development of heterogeneous phenotypes, including depolarized and spontaneously active cardiomyocytes. CONCLUSIONS: TBX3 reprogrammes terminally differentiated working cardiomyocytes and induces important pacemaker properties. The ability of TBX3 to reduce intercellular coupling to overcome current-to-load mismatch and the ability to reduce I(K1) density to enable diastolic depolarization are promising TBX3 characteristics that may facilitate biological pacemaker formation strategies.


Assuntos
Relógios Biológicos/genética , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Nó Sinoatrial/metabolismo , Proteínas com Domínio T/genética
8.
Trends Cardiovasc Med ; 20(5): 164-71, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742272

RESUMO

The sinus node generates the electrical impulse, which spreads rapidly over both atria, causing them to contract simultaneously. In the normal heart, a layer of connective tissue electrically insulates the atria and ventricles. The only pathway that crosses this plane is the atrioventricular conduction axis, through which the impulse reaches the ventricles. Within the axis, the atrioventricular node delays the impulse, allowing the ventricles to be filled before their contraction is initiated. Moreover, the atrioventricular node protects the ventricles from rapid atrial arrhythmias and may take over pacemaker function when the sinus node fails. In pathological conditions, these complex physiological properties contribute to several types of arrhythmias that originate from the atrioventricular conduction system. One example is atrioventricular block, which requires electronic pacemaker implantation because there is currently no cure for this arrhythmia. Because conduction system defects may arise during embryonic development, the mechanisms of conduction system development have been intensively studied. Nevertheless, its developmental origin, molecular composition, and phenotype have remained fertile subjects of research and debate. Lineage and expressional analyses have indicated that the atrioventricular node develops from a subpopulation of precursor cells in the dorsal part of the embryonic atrioventricular canal. These cells become distinct early in development, are less well differentiated compared to the developing working myocardium, and, in addition to their cardiogenic gene program, activate and maintain a neurogenic gene program.


Assuntos
Nó Atrioventricular/embriologia , Nó Atrioventricular/crescimento & desenvolvimento , Crescimento e Desenvolvimento/genética , Sistema de Condução Cardíaco , Humanos
9.
Genes Dev ; 21(9): 1098-112, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17473172

RESUMO

The sinoatrial node initiates the heartbeat and controls the rate and rhythm of contraction, thus serving as the pacemaker of the heart. Despite the crucial role of the sinoatrial node in heart function, the mechanisms that underlie its specification and formation are not known. Tbx3, a transcriptional repressor required for development of vertebrates, is expressed in the developing conduction system. Here we show that Tbx3 expression delineates the sinoatrial node region, which runs a gene expression program that is distinct from that of the bordering atrial cells. We found lineage segregation of Tbx3-negative atrial and Tbx3-positive sinoatrial node precursor cells as soon as cardiac cells turn on the atrial gene expression program. Tbx3 deficiency resulted in expansion of expression of the atrial gene program into the sinoatrial node domain, and partial loss of sinoatrial node-specific gene expression. Ectopic expression of Tbx3 in mice revealed that Tbx3 represses the atrial phenotype and imposes the pacemaker phenotype on the atria. The mice displayed arrhythmias and developed functional ectopic pacemakers. These data identify a Tbx3-dependent pathway for the specification and formation of the sinoatrial node, and show that Tbx3 regulates the pacemaker gene expression program and phenotype.


Assuntos
Função Atrial/genética , Nó Sinoatrial/embriologia , Nó Sinoatrial/fisiologia , Proteínas com Domínio T/genética , Animais , Sequência de Bases , Diferenciação Celular , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Átrios do Coração/citologia , Átrios do Coração/embriologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/fisiologia , Nó Sinoatrial/citologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA