Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Med Genet B Neuropsychiatr Genet ; 171B(1): 3-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26345359

RESUMO

The Research Domain Criteria (RDoC) address three types of aggression: frustrative non-reward, defensive aggression and offensive/proactive aggression. This review sought to present the evidence for genetic underpinnings of aggression and to determine to what degree prior studies have examined phenotypes that fit into the RDoC framework. Although the constructs of defensive and offensive aggression have been widely used in the animal genetics literature, the human literature is mostly agnostic with regard to all the RDoC constructs. We know from twin studies that about half the variance in behavior may be explained by genetic risk factors. This is true for both dimensional, trait-like, measures of aggression and categorical definitions of psychopathology. The non-shared environment seems to have a moderate influence with the effects of shared environment being unclear. Human molecular genetic studies of aggression are in an early stage. The most promising candidates are in the dopaminergic and serotonergic systems along with hormonal regulators. Genome-wide association studies have not yet achieved genome-wide significance, but current samples are too small to detect variants having the small effects one would expect for a complex disorder. The strongest molecular evidence for a genetic basis for aggression comes from animal models comparing aggressive and non-aggressive strains or documenting the effects of gene knockouts. Although we have learned much from these prior studies, future studies should improve the measurement of aggression by using a systematic method of measurement such as that proposed by the RDoC initiative.


Assuntos
Agressão/fisiologia , Comportamento/fisiologia , Meio Ambiente , Estudo de Associação Genômica Ampla , Serotonina/metabolismo , Animais , Estudo de Associação Genômica Ampla/métodos , Humanos , Fenótipo
2.
BMC Neurol ; 14: 43, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24602446

RESUMO

BACKGROUND: The contribution of cerebrovascular function to cognitive performance is gaining increased attention. Transcranial doppler (TCD) is portable, reliable, inexpensive and extremely well tolerated by young and clinical samples. It enables measurement of blood flow velocity in major cerebral arteries at rest and during cognitive tasks. METHODS: We systematically reviewed evidence for associations between cognitive performance and cerebrovascular function in children (0-18 years), as measured using TCD. A total of 2778 articles were retrieved from PsychInfo, Pubmed, and EMBASE searches and 25 relevant articles were identified. RESULTS: Most studies investigated clinical groups, where decreased blood flow velocities in infants were associated with poor neurological functioning, and increased blood flow velocities in children with Sickle cell disease were typically associated with cognitive impairment and lower intelligence. Studies were also identified assessing autistic behaviour, mental retardation and sleep disordered breathing. In healthy children, the majority of studies reported cognitive processing produced lateralised changes in blood flow velocities however these physiological responses did not appear to correlate with behavioural cognitive performance. CONCLUSION: Poor cognitive performance appears to be associated with decreased blood flow velocities in premature infants, and increased velocities in Sickle cell disease children using TCD methods. However knowledge in healthy samples is relatively limited. The technique is well tolerated by children, is portable and inexpensive. It therefore stands to make a valuable contribution to knowledge regarding the underlying functional biology of cognitive performance in childhood.


Assuntos
Circulação Cerebrovascular/fisiologia , Transtornos Cognitivos/diagnóstico por imagem , Cognição/fisiologia , Ultrassonografia Doppler Transcraniana/métodos , Adolescente , Anemia Falciforme/diagnóstico por imagem , Anemia Falciforme/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Criança , Pré-Escolar , Transtornos Cognitivos/fisiopatologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Ultrassonografia Doppler Transcraniana/normas
3.
CNS Drugs ; 31(3): 199-215, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28236285

RESUMO

BACKGROUND: Many children and adolescents with attention deficit/hyperactivity disorder (ADHD) are treated with stimulant and non-stimulant medication. ADHD medication may be associated with cardiovascular effects. It is important to identify whether mean group effects translate into clinically relevant increases for some individual patients, and/or increase the risk for serious cardiovascular adverse events such as stroke or sudden death. OBJECTIVES: To evaluate potential cardiovascular effects of these treatments, we conducted a systematic review and meta-analysis of the effects of methylphenidate (MPH), amphetamines (AMP), and atomoxetine (ATX) on diastolic and systolic blood pressure (DBP, SBP) and heart rate (HR) in children and adolescents with ADHD. METHODS: We conducted systematic searches in electronic databases (PsychINFO, EMBASE and Medline) to identify published trials which involved individuals who were (i) diagnosed with ADHD and were aged between 0-18 years; (ii) treated with MPH, AMP or ATX and (iii) had their DBP and SBP and/or HR measured at baseline (pre) and the endpoint (post) of the study treatment. Studies with an open-label design or a double-blind randomised control design of any duration were included. Statistical analysis involved calculating differences between pre- and post-treatment measurements for the various cardiovascular parameters divided by the pooled standard deviation. Further, we assessed the percentage of clinically relevant increased BP or HR, or documented arrhythmias. RESULTS: Eighteen clinical trials met the inclusion criteria (10 for MPH, 5 for AMP, and 7 for ATX) with data from 5837 participants (80.7% boys) and average duration of 28.7 weeks (range 4-96 weeks). All three medications were associated with a small, but statistically significant pre-post increase of SBP (MPH: standard mean difference [SMD] 0.25, 95% confidence interval [CI] 0.08-0.42, p < 0.01; AMP: SMD 0.09, 95% CI 0.03-0.15, p < 0.01; ATX: SMD 0.16, 95% CI 0.04-0.27, p = 0.01). MPH did not have a pre-post effect on DBP and HR. AMP treatment was associated with a small but statistically significant pre-post increase of DBP (SMD 0.16, CI 0.03-0.29, p = 0.02), as was ATX treatment (SMD 0.22, CI 0.10-0.34, p < 0.01). AMP and ATX were associated with a small to medium statistically significant pre-post increase of HR (AMP: SMD 0.37, CI 0.13-0.60, p < 0.01; ATX: SMD 0.43, CI 0.26-0.60, p < 0.01). The head-to-head comparison of the three medications did not reveal significant differences. Sensitivity analyses revealed that AMP studies of <18 weeks reported higher effect sizes on DBP compared with longer duration studies (F(1) = 19.55, p = 0.05). Further, MPH studies published before 2007 reported higher effect sizes on SBP than studies after 2007 (F(1) = 5.346, p = 0.05). There was no effect of the following moderators: type of medication, doses, sample size, age, gender, type of ADHD, comorbidity or dropout rate. Participants on medication reported 737 (12.6%) other cardiovascular effects. Notably, 2% of patients discontinued their medication treatment due to any cardiovascular effect. However, in the majority of patients, the cardiovascular effects resolved spontaneously, medication doses were changed or the effects were not considered clinically relevant. There were no statistically significant differences between the medication treatments in terms of the severity of cardiovascular effects. CONCLUSIONS: Statistically significant pre-post increases of SBP, DBP and HR were associated with AMP and ATX treatment in children and adolescents with ADHD, while MPH treatment had a statistically significant effect only on SBP in these patients. These increases may be clinically significant for a significant minority of individuals that experience larger increases. Since increased BP and HR in general are considered risk factors for cardiovascular morbidity and mortality during adult life, paediatric patients using ADHD medication should be monitored closely and regularly for HR and BP.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Pressão Sanguínea/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Frequência Cardíaca/efeitos dos fármacos , Psicotrópicos/efeitos adversos , Adolescente , Anfetaminas/efeitos adversos , Anfetaminas/uso terapêutico , Cloridrato de Atomoxetina/efeitos adversos , Cloridrato de Atomoxetina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Humanos , Lactente , Metilfenidato/efeitos adversos , Metilfenidato/uso terapêutico , Psicotrópicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA