Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 5364, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686195

RESUMO

Elemental type-II superconducting niobium is the material of choice for superconducting radiofrequency cavities used in modern particle accelerators, light sources, detectors, sensors, and quantum computing architecture. An essential challenge to increasing energy efficiency in rf applications is the power dissipation due to residual magnetic field that is trapped during the cool down process due to incomplete magnetic field expulsion. New SRF cavity processing recipes that use surface doping techniques have significantly increased their cryogenic efficiency. However, the performance of SRF Nb accelerators still shows vulnerability to a trapped magnetic field. In this manuscript, we report the observation of a direct link between flux trapping and incomplete flux expulsion with spatial variations in microstructure within the niobium. Fine-grain recrystallized microstructure with an average grain size of 10-50 µm leads to flux trapping even with a lack of dislocation structures in grain interiors. Larger grain sizes beyond 100-400 µm do not lead to preferential flux trapping, as observed directly by magneto-optical imaging. While local magnetic flux variations imaged by magneto-optics provide clarity on a microstructure level, bulk variations are also indicated by variations in pinning force curves with sequential heat treatment studies. The key results indicate that complete control of the niobium microstructure will help produce higher performance superconducting resonators with reduced rf losses1 related to the magnetic flux trapping.

2.
Sci Rep ; 11(1): 17845, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497329

RESUMO

In recent years there has been an increasing effort in improving the performance of Nb3Sn for high-field applications, in particular for the fabrication of conductors suitable for the realization of the Future Circular Collider (FCC) at CERN. This challenging task has led to the investigation of new routes to advance the high-field pinning properties, the irreversibility and the upper critical fields (HIrr and Hc2, respectively). The effect of hafnium addition to the standard Nb-4Ta alloy has been recently demonstrated to be particularly promising and, in this paper, we investigate the origins of the observed improvements of the superconducting properties. Electron microscopy, Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS) and Atom Probe Tomography (APT) characterization clearly show that, in presence of oxygen, both fine Nb3Sn grains and HfO2 nanoparticles form. Although EXAFS is unable to detect significant amounts of Hf in the A15 structure, APT does indeed reveal some residual intragrain metallic Hf. To investigate the layer properties in more detail, we created a microbridge from a thin lamella extracted by Focused Ion Beam (FIB) and measured the transport properties of Ta-Hf-doped Nb3Sn. Hc2(0) is enhanced to 30.8 T by the introduction of Hf, ~ 1 T higher than those of only Ta-doped Nb3Sn, and, even more importantly the position of the pinning force maximum exceeds 6 T, against the typical ~ 4.5-4.7 T of the only Ta-doped material. These results show that the improvements generated by Hf addition can significantly enhance the high-field performance, bringing Nb3Sn closer to the requirements necessary for FCC realization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA