RESUMO
Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.
Assuntos
Neoplasias da Mama/patologia , Progressão da Doença , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Análise de Célula Única , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes myc/genética , Humanos , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC-driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl-tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC-driven tumors. We find that fewer glutamine-derived carbons are incorporated into GSH in tumor tissue relative to non-tumor tissue. Expression of GCLC, the rate-limiting enzyme of GSH synthesis, is attenuated by the MYC-induced microRNA miR-18a. Inhibition of miR-18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC-driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC-dependent attenuation of GCLC by miR-18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine.
Assuntos
Glutamato-Cisteína Ligase/antagonistas & inibidores , Glutationa/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias Hepáticas/genética , Redes e Vias Metabólicas/genética , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNARESUMO
In order to elucidate the functional organization of the genome, it is vital to directly visualize the interactions between genomic elements in living cells. For this purpose, we engineered the Cas9 protein from Staphylococcus aureus (SaCas9) for the imaging of endogenous genomic loci, which showed a similar robustness and efficiency as previously reported for Streptococcus pyogenes Cas9 (SpCas9). Imaging readouts allowed us to characterize the DNA-binding activity of SaCas9 and to optimize its sgRNA scaffold. Combining SaCas9 and SpCas9, we demonstrated two-color CRISPR imaging with the capability to resolve genomic loci spaced by <300 kb. Combinatorial color-mixing further enabled us to code multiple genomic elements in the same cell. Our results highlight the potential of combining SpCas9 and SaCas9 for multiplexed CRISPR-Cas9 applications, such as imaging and genome engineering.
Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Staphylococcus aureus/enzimologia , Streptococcus pyogenes/enzimologia , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Genoma/genética , Células HEK293 , Humanos , Camundongos , Staphylococcus aureus/genética , Streptococcus pyogenes/genéticaRESUMO
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. The search for targeted treatments has been hampered by the lack of relevant animal models for the genetically diverse subsets of HCC, including the 20-40% of HCCs that are defined by activating mutations in the gene encoding ß-catenin. To address this chemotherapeutic challenge, we created and characterized transgenic zebrafish expressing hepatocyte-specific activated ß-catenin. By 2 months post fertilization (mpf), 33% of transgenic zebrafish developed HCC in their livers, and 78% and 80% of transgenic zebrafish showed HCC at 6 and 12 mpf, respectively. As expected for a malignant process, transgenic zebrafish showed significantly decreased mean adult survival compared to non-transgenic control siblings. Using this novel transgenic model, we screened for druggable pathways that mediate ß-catenin-induced liver growth and identified two c-Jun N-terminal kinase (JNK) inhibitors and two antidepressants (one tricyclic antidepressant, amitriptyline, and one selective serotonin reuptake inhibitor) that suppressed this phenotype. We further found that activated ß-catenin was associated with JNK pathway hyperactivation in zebrafish and in human HCC. In zebrafish larvae, JNK inhibition decreased liver size specifically in the presence of activated ß-catenin. The ß-catenin-specific growth-inhibitory effect of targeting JNK was conserved in human liver cancer cells. Our other class of hits, antidepressants, has been used in patient treatment for decades, raising the exciting possibility that these drugs could potentially be repurposed for cancer treatment. In support of this proposal, we found that amitriptyline decreased tumor burden in a mouse HCC model. Our studies implicate JNK inhibitors and antidepressants as potential therapeutics for ß-catenin-induced liver tumors.
Assuntos
Amitriptilina/uso terapêutico , Antidepressivos Tricíclicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , beta Catenina/metabolismo , Animais , Animais Geneticamente Modificados , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mesotelina , Camundongos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Xenopus laevis , Peixe-Zebra , beta Catenina/genéticaRESUMO
BACKGROUND: Understanding why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well remains a challenge. This study aims to understand the potential underlying mechanisms distinguishing early-stage TNBC tumors that respond to clinical intervention from non-responders, as well as to identify clinically viable therapeutic strategies, specifically for TNBC patients who may not benefit from existing therapies. METHODS: We conducted retrospective bioinformatics analysis of historical gene expression datasets to identify a group of genes whose expression levels in early-stage tumors predict poor clinical outcomes in TNBC. In vitro small-molecule screening, genetic manipulation, and drug treatment in syngeneic mouse models of TNBC were utilized to investigate potential therapeutic strategies and elucidate mechanisms of drug action. RESULTS: Our bioinformatics analysis reveals a robust association between increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors and subsequent disease progression in TNBC. A targeted small-molecule screen identifies PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Notably, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. CONCLUSIONS: Our data propose S100A8/A9 as a potential predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC. This work encourages the development of S100A8/A9-based liquid biopsy tests for treatment guidance.
Breast cancer is a complex disease, and not all patients respond well to existing treatments. In this study, we sought to understand why some patients with a specific type of breast cancer called triple-negative breast cancer respond poorly to current therapies. We also aimed to identify new treatments for these patients. We analyzed genetic data from breast cancer patients and identified a factor called S100A8/A9, which is linked to poor outcomes in early-stage cancer. We tested drugs that can reduce the levels of this factor in tumors and found promising results, especially when combined with another treatment called immunotherapy. Our findings suggest that S100A8/A9 could help predict how patients will respond to treatments, potentially leading to better therapies in the future.
RESUMO
It remains elusive why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well. Our retrospective analysis of historical gene expression datasets reveals that increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors is robustly associated with subsequent disease progression in TNBC. Although it has recently gained recognition as a potential anticancer target, S100A8/A9 has not been integrated into clinical study designs evaluating molecularly targeted therapies. Our small molecule screen has identified PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Furthermore, combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Importantly, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. Thus, our data suggest that S100A8/A9 could be a predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC and encourage the development of S100A8/A9-based liquid biopsy tests.
RESUMO
Tumors that overexpress the MYC oncogene are frequently aneuploid, a state associated with highly aggressive cancers and tumor evolution. However, how MYC causes aneuploidy is not well understood. Here, we show that MYC overexpression induces mitotic spindle assembly defects and chromosomal instability (CIN) through effects on microtubule nucleation and organization. Attenuating MYC expression reverses mitotic defects, even in established tumor cell lines, indicating an ongoing role for MYC in CIN. MYC reprograms mitotic gene expression, and we identify TPX2 to be permissive for spindle assembly in MYC-high cells. TPX2 depletion blocks mitotic progression, induces cell death, and prevents tumor growth. Further elevating TPX2 expression reduces mitotic defects in MYC-high cells. MYC and TPX2 expression may be useful biomarkers to stratify patients for anti-mitotic therapies. Our studies implicate MYC as a regulator of mitosis and suggest that blocking MYC activity can attenuate the emergence of CIN and tumor evolution.
Assuntos
Mitose , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Linhagem Celular Tumoral , Instabilidade Cromossômica , Citoproteção , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Mutações Sintéticas LetaisRESUMO
Thousands of pathogens are known to infect humans, but only a fraction are readily identifiable using current diagnostic methods. Microbial cell-free DNA sequencing offers the potential to non-invasively identify a wide range of infections throughout the body, but the challenges of clinical-grade metagenomic testing must be addressed. Here we describe the analytical and clinical validation of a next-generation sequencing test that identifies and quantifies microbial cell-free DNA in plasma from 1,250 clinically relevant bacteria, DNA viruses, fungi and eukaryotic parasites. Test accuracy, precision, bias and robustness to a number of metagenomics-specific challenges were determined using a panel of 13 microorganisms that model key determinants of performance in 358 contrived plasma samples, as well as 2,625 infections simulated in silico and 580 clinical study samples. The test showed 93.7% agreement with blood culture in a cohort of 350 patients with a sepsis alert and identified an independently adjudicated cause of the sepsis alert more often than all of the microbiological testing combined (169 aetiological determinations versus 132). Among the 166 samples adjudicated to have no sepsis aetiology identified by any of the tested methods, sequencing identified microbial cell-free DNA in 62, likely derived from commensal organisms and incidental findings unrelated to the sepsis alert. Analysis of the first 2,000 patient samples tested in the CLIA laboratory showed that more than 85% of results were delivered the day after sample receipt, with 53.7% of reports identifying one or more microorganisms.
Assuntos
Ácidos Nucleicos Livres/genética , Doenças Transmissíveis/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos de Coortes , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , DNA Bacteriano/genética , DNA Fúngico/genética , DNA Viral/genética , Humanos , Sepse/diagnóstico , Sepse/microbiologiaRESUMO
Visual search can be time-consuming, especially if the scene contains a large number of possibly relevant objects. An instance of this problem is present when using geographic or schematic maps with many different elements representing cities, streets, sights, and the like. Unless the map is well-known to the reader, the full map or at least large parts of it must be scanned to find the elements of interest. In this paper, we present a controlled eye-tracking study (30 participants) to compare four variants of map annotation with labels: within-image annotations, grid reference annotation, directional annotation, and miniature annotation. Within-image annotation places labels directly within the map without any further search support. Grid reference annotation corresponds to the traditional approach known from atlases. Directional annotation utilizes a label in combination with an arrow pointing in the direction of the label within the map. Miniature annotation shows a miniature grid to guide the reader to the area of the map in which the label is located. The study results show that within-image annotation is outperformed by all other annotation approaches. Best task completion times are achieved with miniature annotation. The analysis of eye-movement data reveals that participants applied significantly different visual task solution strategies for the different visual annotations.
RESUMO
Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor-, progesterone receptor- or human epidermal growth factor 2 receptor-positive (RP) breast cancer. We and others have shown that MYC alters metabolism during tumorigenesis. However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient-derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer.
Assuntos
Carcinogênese/genética , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/genética , Metabolismo Energético/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Oxirredução , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.
Assuntos
Carcinoma Ductal de Mama/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Camundongos Transgênicos , Microscopia de Fluorescência , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).