Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 116, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964503

RESUMO

BACKGROUND: Sequence verification is essential for plasmids used as critical reagents or therapeutic products. Typically, high-quality plasmid sequence is achieved through capillary-based Sanger sequencing, requiring customized sets of primers for each plasmid. This process can become expensive, particularly for applications where the validated sequence needs to be produced within a regulated and quality-controlled environment for downstream clinical research applications. RESULTS: Here, we describe a cost-effective and accurate plasmid sequencing and consensus generation procedure using the Oxford Nanopore Technologies' MinION device as an alternative to capillary-based plasmid sequencing options. This procedure can verify the identity of a pure population of plasmid, either confirming it matches the known and expected sequence, or identifying mutations present in the plasmid if any exist. We use a full MinION flow cell per plasmid, maximizing available data and allowing for stringent quality filters. Pseudopairing reads for consensus base calling reduces read error rates from 5.3 to 0.53%, and our pileup consensus approach provides per-base counts and confidence scores, allowing for interpretation of the certainty of the resulting consensus sequences. For pure plasmid samples, we demonstrate 100% accuracy in the resulting consensus sequence, and the sensitivity to detect small mutations such as insertions, deletions, and single nucleotide variants. In test cases where the sequenced pool of plasmids contains subclonal templates, detection sensitivity is similar to that of traditional capillary sequencing. CONCLUSIONS: Our pipeline can provide significant cost savings compared to outsourcing clinical-grade sequencing of plasmids, making generation of high-quality plasmid sequence for clinical sequence verification more accessible. While other long-read-based methods offer higher-throughput and less cost, our pipeline produces complete and accurate sequence verification for cases where absolute sequence accuracy is required.


Assuntos
Nanoporos , Análise de Sequência de DNA/métodos , Plasmídeos/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
N Engl J Med ; 368(22): 2059-74, 2013 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-23634996

RESUMO

BACKGROUND: Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS: We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. RESULTS: AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. CONCLUSIONS: We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).


Assuntos
Leucemia Mieloide Aguda/genética , Mutação , Adulto , Ilhas de CpG , Metilação de DNA , Epigenômica , Feminino , Expressão Gênica , Fusão Gênica , Genoma Humano , Humanos , Leucemia Mieloide Aguda/classificação , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Nucleofosmina , Análise de Sequência de DNA/métodos
3.
Front Immunol ; 13: 1074740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601119

RESUMO

Access to commercial CD19 CAR-T cells remains limited even in wealthy countries like Canada due to clinical, logistical, and financial barriers related to centrally manufactured products. We created a non-commercial academic platform for end-to-end manufacturing of CAR-T cells within Canada's publicly funded healthcare system. We report initial results from a single-arm, open-label study to determine the safety and efficacy of in-house manufactured CD19 CAR-T cells (entitled CLIC-1901) in participants with relapsed/refractory CD19 positive hematologic malignancies. Using a GMP compliant semi-automated, closed process on the Miltenyi Prodigy, T cells were transduced with lentiviral vector bearing a 4-1BB anti-CD19 CAR transgene and expanded. Participants underwent lymphodepletion with fludarabine and cyclophosphamide, followed by infusion of non-cryopreserved CAR-T cells. Thirty participants with non-Hodgkin's lymphoma (n=25) or acute lymphoblastic leukemia (n=5) were infused with CLIC-1901: 21 males (70%), median age 66 (range 18-75). Time from enrollment to CLIC-1901 infusion was a median of 20 days (range 15-48). The median CLIC-1901 dose infused was 2.3 × 106 CAR-T cells/kg (range 0.13-3.6 × 106/kg). Toxicity included ≥ grade 3 cytokine release syndrome (n=2) and neurotoxicity (n=1). Median follow-up was 6.5 months. Overall response rate at day 28 was 76.7%. Median progression-free and overall survival was 6 months (95%CI 3-not estimable) and 11 months (95% 6.6-not estimable), respectively. This is the first trial of in-house manufactured CAR-T cells in Canada and demonstrates that administering fresh CLIC-1901 product is fast, safe, and efficacious. Our experience may provide helpful guidance for other jurisdictions seeking to create feasible and sustainable CAR-T cell programs in research-oriented yet resource-constrained settings. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT03765177, identifier NCT03765177.


Assuntos
Neoplasias Hematológicas , Linfoma não Hodgkin , Masculino , Humanos , Idoso , Linfócitos T , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Ciclofosfamida , Neoplasias Hematológicas/terapia , Recidiva , Antígenos CD19
4.
Mol Ther Methods Clin Dev ; 17: 393-399, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32128343

RESUMO

Mycoplasma species (spp.) bacteria can infect cell cultures, posing a potential threat to recipients of cell therapy products. Conventional Mycoplasma testing methods are highly sensitive but typically require a minimum of 28 days to produce results. This delay is problematic if rapid results are needed to inform treatment decisions. Nucleic acid amplification technique (NAT) methods have been gaining favor for Mycoplasma testing due to their speed and specificity; however, they must first be qualified as meeting or exceeding the sensitivity of the compendial method. We present herein a NAT method for the detection of Mycoplasma that circumvents the need for live Mycoplasma spp. in the test procedure by instead being qualified using Mycoplasma spp. genomic DNA. We have demonstrated a lower limit of detection that exceeds the regulatory requirements set by Health Canada. This assay is now being used to screen clinical cell therapy products manufactured at our center.

5.
BMC Genomics ; 6: 2, 2005 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-15631628

RESUMO

BACKGROUND: Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. RESULTS: Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). CONCLUSIONS: Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.


Assuntos
Biotecnologia/métodos , Biologia Computacional/métodos , Etiquetas de Sequências Expressas , Análise de Sequência de DNA/métodos , Automação , Biotecnologia/economia , Biotecnologia/instrumentação , Mapeamento Cromossômico , Primers do DNA , Perfilação da Expressão Gênica , Biblioteca Gênica , Modelos Estatísticos , Plasmídeos/metabolismo , Populus/metabolismo , Análise de Sequência de DNA/economia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA